Skip to main content
Log in

Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A nonlinear wave phenomenon is one of the significant fields of scientific research, which a lot of researchers in the past have deliberated about mathematical models clarifying the treatment. The nonlinear Korteweg-de Vries-Benjamin-Bona-Mahony-Burgers (KdV-BBM-B) model plays an essential role in numerous subjects of engineering and science. This model is numerically approximated by means of the combination of the radial basis function (RBF) and the finite difference (RBF-FD), RBF-pseudospectral (RBF-PS) that are stated in this paper. These methods are meshless, and no obligation is required to linearize the nonlinear parts. The radial kernels are employed to convert the PDE into a system of ODEs. This ODE system is solved with the help of the higher-order ODE solver. In addition, it is indicated that the present numerical techniques are stable. To evaluate the validity and applicability of the aforesaid techniques, the error norms and three invariants I1, I2 and I3 are calculated and displayed both numerically and graphically. The obtained results are compared with previous schemes found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  2. A.R. Osborne, in Scattering (Elsevier, 2002) pp. 637--666

  3. D.J. Korteweg, G. De Vries, Philos. Mag. 39, 422 (1895)

    Article  MathSciNet  Google Scholar 

  4. T.B. Benjamin, J.L. Bona, J.J. Mahony, Math. Phys. Sc. 272, 47 (1972)

    Article  Google Scholar 

  5. J. Boussinesq, J. Math. Pures Appl. 1872, 55 (1872)

    MathSciNet  Google Scholar 

  6. K. Al-Khaled, S. Momani, A. Alawneh, Appl. Math. Comput. 171, 281 (2005)

    MathSciNet  Google Scholar 

  7. H. Tari, D. Ganji, Phys. Lett. A 367, 95 (2007)

    Article  ADS  Google Scholar 

  8. S. El-Wakil, M. Abdou, A. Hendi, Phys. Lett. A 372, 830 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. D. Dutykh, T. Katsaounis, D. Mitsotakis, Int. J. Numer. Methods Fluids 71, 717 (2013)

    Article  ADS  Google Scholar 

  10. P. Avilez-Valente, F.J. Seabra-Santos, Int. J. Numer. Methods Fluids 59, 969 (2009)

    Article  ADS  Google Scholar 

  11. D. Dutykh, F. Dias, CR. Mecanique 335, 559 (2007)

    Article  Google Scholar 

  12. A. Biswas, A. Kara, Appl. Math. Comput. 217, 4289 (2010)

    MathSciNet  Google Scholar 

  13. M. Zarebnia, R. Parvaz, Appl. Math. Comput. 284, 79 (2016)

    MathSciNet  Google Scholar 

  14. S.B.G. Karakoc, S.K. Bhowmik, Comput. Math. Appl. 77, 1917 (2019)

    Article  MathSciNet  Google Scholar 

  15. T.A. Driscoll, B. Fornberg, Comput. Math. Appl. 43, 413 (2002)

    Article  MathSciNet  Google Scholar 

  16. B. Fornberg, J. Zuev, Comput. Math. Appl. 54, 379 (2007)

    Article  MathSciNet  Google Scholar 

  17. C. Franke, R. Schaback, Adv. Comput. Math. 8, 381 (1998)

    Article  MathSciNet  Google Scholar 

  18. C.A. Micchelli, in Approximation Theory and Spline Functions (Springer, 1984) pp. 143--145

  19. W. Madych, S. Nelson, Math. Comput. 54, 211 (1990)

    Article  ADS  Google Scholar 

  20. A. Golbabai, H. Rabiei, Eng. Anal. Bound. Elem. 36, 1555 (2012)

    Article  MathSciNet  Google Scholar 

  21. A. Golbabai, A. Nikpour, J. Comput. Phys. 322, 586 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Golbabai, A. Nikpour, Appl. Math. Comput. 271, 567 (2015)

    MathSciNet  Google Scholar 

  23. A. Golbabai, A. Safdari-Vaighani, Computing 92, 225 (2011)

    Article  MathSciNet  Google Scholar 

  24. A. Golbabai, A. Safdari-Vaighani, Electron. Trans. Numer. Anal. 39, 22 (2012)

    MathSciNet  Google Scholar 

  25. J. Rashidinia, M. Khasi, G. Fasshauer, Comput. Math. Appl. 75, 1831 (2018)

    Article  MathSciNet  Google Scholar 

  26. Q. Liu, Y. Gu, P. Zhuang, F. Liu, Y. Nie, Comput. Mech. 48, 1 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Gu, P. Zhuang, Q. Liu, Int. J. Comput. Methods 8, 653 (2011)

    Article  MathSciNet  Google Scholar 

  28. A. Mohebbi, M. Abbaszadeh, M. Dehghan, Eng. Anal. Bound. Elem. 38, 72 (2014)

    Article  MathSciNet  Google Scholar 

  29. M. Dehghan, M. Abbaszadeh, A. Mohebbi, Numer. Algorithms 73, 445 (2016)

    Article  MathSciNet  Google Scholar 

  30. A. Golbabai, O. Nikan, J. Comput. Complex Appl. 1, 64 (2015)

    Google Scholar 

  31. A. Golbabai, O. Nikan, Casp. J. Math. Sci. 4, 1 (2015)

    MathSciNet  Google Scholar 

  32. A. Golbabai, O. Nikan, T. Nikazad, Int. J. Appl. Comput. Math. 5, 50 (2019)

    Article  Google Scholar 

  33. A. Golbabai, O. Nikan, M. Molavi Arabshai, TWMS J. Pure Appl. Math. 10, 117 (2019)

    MathSciNet  Google Scholar 

  34. A. Golbabai, O. Nikan, Comput. Econ. (2019) https://doi.org/10.1007/s10614-019-09880-4

  35. A. Golbabai, O. Nikan, J.R. Tousi, Commun. Numer. Anal. 2016, 81 (2016)

    Article  Google Scholar 

  36. A. Golbabai, M. Mammadov, S. Seifollahi, Comput. Math. Appl. 57, 1651 (2009)

    Article  MathSciNet  Google Scholar 

  37. K. Maleknejad, H. Mohammadikia, J. Rashidinia, Iran. J. Sci. Technol. A, https://doi.org/10.1007/s40995-017-0380-0 (2017)

  38. G.E. Fasshauer, WIT. Tran. Model. Simul. 39, 10 (2005)

    MathSciNet  Google Scholar 

  39. G.E. Fasshauer, J.G. Zhang, Numer. Algorithms 45, 345 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  40. A. Ferreira, G. Fasshauer, Comput. Methods Appl. Mech. Engrg. 196, 134 (2006)

    Article  ADS  Google Scholar 

  41. A. Ferreira, G. Fasshauer, Compos. Struct 79, 202 (2007)

    Article  Google Scholar 

  42. C.M. Roque, A.J. Ferreira, A.M. Neves, G.E. Fasshauer, C.M. Soares, R.M.N. Jorge, Mech. Adv. Mater. Struct. 17, 636 (2010)

    Article  Google Scholar 

  43. C. Roque, A. Ferreira, A. Neves, C.M. Soares, J. Reddy, R. Jorge, J. Sandw. Struct. Mater. 13, 681 (2011)

    Article  Google Scholar 

  44. M. Uddin, S. Ali, Math. Sci. Lett. 2, 55 (2012)

    Article  Google Scholar 

  45. M. Uddin, Appl. Math. Comput. 222, 619 (2013)

    MathSciNet  Google Scholar 

  46. J.R. Dormand, P.J. Prince, J. Comput. Appl. Math. 6, 19 (1980)

    Article  MathSciNet  Google Scholar 

  47. L.F. Shampine, M.K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial Value Problem (1975)

  48. M.E. Chenoweth, A Local Radial Basis Function Method for the Numerical Solution of Partial Differential (2012)

  49. E.W. Cheney, W.A. Light, Scattered Data Approximation, Vol. 101 (AMS, 2009)

  50. G.B. Wright, B. Fornberg, J. Comput. Phys. 212, 99 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  51. H. Wendland, Scattered Data Approximation, Vol. 17 (Cambridge University Press, 2004)

  52. M.D. Buhmann, Radial Basis Functions: Theory and Implementations, Vol. 12 (Cambridge University Press, 2003)

  53. S.A. Sarra, E.J. Kansa, Advances in Computational Mechanics, Vol. 2 (Tech Schiece Press, 2009)

  54. L.N. Trefethen, Spectral Methods in MATLAB, Vol. 10 (SIAM, 2000)

  55. M.K. Jain, Numerical Solution of Differential Equations (Wiley Eastern New Delhi, 1979)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Golbabai.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikan, O., Golbabai, A. & Nikazad, T. Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods. Eur. Phys. J. Plus 134, 367 (2019). https://doi.org/10.1140/epjp/i2019-12748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12748-1

Navigation