Skip to main content
Log in

Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We develop a general formalism applying to Newtonian self-gravitating Bose-Einstein condensates. This formalism may find application in the context of dark matter halos. We introduce a generalized Gross-Pitaevskii equation including a source of dissipation (damping) and an arbitrary nonlinearity. Using the Madelung transformation, we derive the hydrodynamic representation of this generalized Gross-Pitaevskii equation and obtain a damped quantum Euler equation involving a friction force proportional and opposite to the velocity and a pressure force associated with an equation of state determined by the nonlinearity present in the generalized Gross-Pitaevskii equation. In the strong friction limit, we obtain a quantum Smoluchowski equation. These equations satisfy an H-theorem for a free energy functional constructed with a generalized entropy. We specifically consider the Boltzmann and Tsallis entropies associated with isothermal and polytropic equations of state. We also consider the entropy associated with the logotropic equation of state. We derive the virial theorem corresponding to the generalized Gross-Pitaevskii equation, damped quantum Euler equation, and quantum Smoluchowski equation. Using a Gaussian ansatz, we obtain a simple equation governing the dynamical evolution of the size of the condensate. We develop a mechanical analogy associated with this gross dynamics. We highlight a specific model of dark matter halos corresponding to a generalized Gross-Pitaevskii equation with a logarithmic nonlinearity and a cubic nonlinearity. It corresponds to a damped quantum Euler equation associated with a mixed entropy combining the Boltzmann and Tsallis entropies. It leads to dark matter halos with an equation of state \(P=\rho k_{B} T_{\rm eff}/m+2\pi a_{s}\hbar^{2}\rho^{2}/m^{3}\) presenting a condensed core (BEC/soliton) and an isothermal halo with an effective temperature \(T_{\rm eff}\). We propose that this model provides an effective coarse-grained parametrization of dark matter halos experiencing gravitational cooling. Specific applications of our formalism to dark matter halos will be developed in future papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, England, 2008)

  2. A. Suárez, V.H. Robles, T. Matos, Astrophys. Space Sci. Proc. 38, 107 (2014)

    Article  ADS  Google Scholar 

  3. T. Rindler-Daller, P.R. Shapiro, Astrophys. Space Sci. Proc. 38, 163 (2014)

    Article  ADS  Google Scholar 

  4. P.H. Chavanis, Self-gravitating Bose-Einstein condensates, in Quantum Aspects of Black Holes, edited by X. Calmet (Springer, 2015)

  5. M.R. Baldeschi, G.B. Gelmini, R. Ruffini, Phys. Lett. B 122, 221 (1983)

    Article  ADS  Google Scholar 

  6. M.Yu. Khlopov, B.A. Malomed, Ya.B. Zeldovich, Mon. Not. R. Astron. Soc. 215, 575 (1985)

    Article  ADS  Google Scholar 

  7. M. Membrado, A.F. Pacheco, J. Sanudo, Phys. Rev. A 39, 4207 (1989)

    Article  ADS  Google Scholar 

  8. S.J. Sin, Phys. Rev. D 50, 3650 (1994)

    Article  ADS  Google Scholar 

  9. S.U. Ji, S.J. Sin, Phys. Rev. D 50, 3655 (1994)

    Article  ADS  Google Scholar 

  10. J.W. Lee, I. Koh, Phys. Rev. D 53, 2236 (1996)

    Article  ADS  Google Scholar 

  11. F.E. Schunck, astro-ph/9802258

  12. T. Matos, F.S. Guzmán, Astron. Nachr. 320, 97 (1999)

    Article  ADS  Google Scholar 

  13. V. Sahni, L. Wang, Phys. Rev. D 62, 103517 (2000)

    Article  ADS  Google Scholar 

  14. F.S. Guzmán, T. Matos, Class. Quantum Grav. 17, L9 (2000)

    Article  ADS  Google Scholar 

  15. W. Hu, R. Barkana, A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000)

    Article  ADS  Google Scholar 

  16. P.J.E. Peebles, Astrophys. J. 534, L127 (2000)

    Article  ADS  Google Scholar 

  17. J. Goodman, New Astron. 5, 103 (2000)

    Article  ADS  Google Scholar 

  18. T. Matos, L.A. Ureña-López, Phys. Rev. D 63, 063506 (2001)

    Article  ADS  Google Scholar 

  19. A. Arbey, J. Lesgourgues, P. Salati, Phys. Rev. D 64, 123528 (2001)

    Article  ADS  Google Scholar 

  20. M.P. Silverman, R.L. Mallett, Class. Quantum Grav. 18, L103 (2001)

    Article  ADS  Google Scholar 

  21. M. Alcubierre, F.S. Guzmán, T. Matos, D. Núñez, L.A. Ureña-López, P. Wiederhold, Class. Quantum Grav. 19, 5017 (2002)

    Article  ADS  Google Scholar 

  22. M.P. Silverman, R.L. Mallett, Gen. Relativ. Gravit. 34, 633 (2002)

    Article  Google Scholar 

  23. J. Lesgourgues, A. Arbey, P. Salati, New Astron. Rev. 46, 791 (2002)

    Article  ADS  Google Scholar 

  24. A. Arbey, J. Lesgourgues, P. Salati, Phys. Rev. D 68, 023511 (2003)

    Article  ADS  Google Scholar 

  25. T. Fukuyama, M. Morikawa, Prog. Theor. Phys. 115, 1047 (2006)

    Article  ADS  Google Scholar 

  26. C.G. Böhmer, T. Harko, J. Cosmol. Astropart. Phys. 06, 025 (2007)

    Article  Google Scholar 

  27. T. Fukuyama, M. Morikawa, T. Tatekawa, J. Cosmol. Astropart. Phys. 06, 033 (2008)

    Article  ADS  Google Scholar 

  28. A. Bernal, T. Matos, D. Núñez, Rev. Mex. Astron. Astrofis. 44, 149 (2008)

    ADS  Google Scholar 

  29. T. Fukuyama, M. Morikawa, Phys. Rev. D 80, 063520 (2009)

    Article  ADS  Google Scholar 

  30. P. Sikivie, Q. Yang, Phys. Rev. Lett. 103, 111301 (2009)

    Article  ADS  Google Scholar 

  31. T. Matos, A. Vázquez-González, J. Magaña, Mon. Not. R. Astron. Soc. 393, 1359 (2009)

    Article  ADS  Google Scholar 

  32. J.W. Lee, Phys. Lett. B 681, 118 (2009)

    Article  ADS  Google Scholar 

  33. T.P. Woo, T. Chiueh, Astrophys. J. 697, 850 (2009)

    Article  ADS  Google Scholar 

  34. J.W. Lee, S. Lim, J. Cosmol. Astropart. Phys. 01, 007 (2010)

    Article  ADS  Google Scholar 

  35. P.H. Chavanis, Phys. Rev. D 84, 043531 (2011)

    Article  ADS  Google Scholar 

  36. P.H. Chavanis, L. Delfini, Phys. Rev. D 84, 043532 (2011)

    Article  ADS  Google Scholar 

  37. P.H. Chavanis, Phys. Rev. D 84, 063518 (2011)

    Article  ADS  Google Scholar 

  38. F. Briscese, Phys. Lett. B 696, 315 (2011)

    Article  ADS  Google Scholar 

  39. T. Harko, Mon. Not. R. Astron. Soc. 413, 3095 (2011)

    Article  ADS  Google Scholar 

  40. T. Harko, J. Cosmol. Astropart. Phys. 05, 022 (2011)

    Article  ADS  Google Scholar 

  41. A. Suárez, T. Matos, Mon. Not. R. Astron. Soc. 416, 87 (2011)

    ADS  Google Scholar 

  42. P.H. Chavanis, Astron. Astrophys. 537, A127 (2012)

    Article  ADS  Google Scholar 

  43. H. Velten, E. Wamba, Phys. Lett. B 709, 1 (2012)

    Article  ADS  Google Scholar 

  44. M.O.C. Pires, J.C.C. de Souza, J. Cosmol. Astropart. Phys. 11, 024 (2012)

    Article  ADS  Google Scholar 

  45. C.-G. Park, J.-C. Hwang, H. Noh, Phys. Rev. D 86, 083535 (2012)

    Article  ADS  Google Scholar 

  46. V.H. Robles, T. Matos, Mon. Not. R. Astron. Soc. 422, 282 (2012)

    Article  ADS  Google Scholar 

  47. T. Rindler-Daller, P.R. Shapiro, Mon. Not. R. Astron. Soc. 422, 135 (2012)

    Article  ADS  Google Scholar 

  48. V. Lora, J. Magaña, A. Bernal, F.J. Sánchez-Salcedo, E.K. Grebel, J. Cosmol. Astropart. Phys. 02, 011 (2012)

    Article  ADS  Google Scholar 

  49. J. Magaña, T. Matos, A. Suárez, F.J. Sánchez-Salcedo, JCAP 10, 003 (2012)

    Article  ADS  Google Scholar 

  50. G. Manfredi, P.A. Hervieux, F. Haas, Class. Quantum Grav. 30, 075006 (2013)

    Article  ADS  Google Scholar 

  51. A.X. González-Morales, A. Diez-Tejedor, L.A. Ureña-López, O. Valenzuela, Phys. Rev. D 87, 021301(R) (2013)

    Article  ADS  Google Scholar 

  52. F.S. Guzmán, F.D. Lora-Clavijo, J.J. González-Avilés, F.J. Rivera-Paleo, J. Cosmol. Astropart. Phys. 09, 034 (2013)

    Article  ADS  Google Scholar 

  53. H.Y. Schive, T. Chiueh, T. Broadhurst, Nat. Phys. 10, 496 (2014)

    Article  Google Scholar 

  54. H.Y. Schive et al., Phys. Rev. Lett. 113, 261302 (2014)

    Article  ADS  Google Scholar 

  55. B. Li, T. Rindler-Daller, P.R. Shapiro, Phys. Rev. D 89, 083536 (2014)

    Article  ADS  Google Scholar 

  56. D. Bettoni, M. Colombo, S. Liberati, JCAP 02, 004 (2014)

    Article  ADS  Google Scholar 

  57. V. Lora, J. Magaña, JCAP 09, 011 (2014)

    Article  ADS  Google Scholar 

  58. P.H. Chavanis, Eur. Phys. J. Plus 130, 180 (2015)

    Article  Google Scholar 

  59. E.J.M. Madarassy, V.T. Toth, Phys. Rev. D 91, 044041 (2015)

    Article  ADS  Google Scholar 

  60. A. Suárez, P.H. Chavanis, Phys. Rev. D 92, 023510 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  61. A. Suárez, P.H. Chavanis, J. Phys.: Conf. Ser. 654, 012088 (2015)

    Google Scholar 

  62. P.H. Chavanis, Phys. Rev. D 92, 103004 (2015)

    Article  ADS  Google Scholar 

  63. A.H. Guth, M.P. Hertzberg, C. Prescod-Weinstein, Phys. Rev. D 92, 103513 (2015)

    Article  ADS  Google Scholar 

  64. J.C.C. de Souza, M. Ujevic, Gen. Relativ. Gravit. 47, 100 (2015)

    Article  ADS  Google Scholar 

  65. R.C. de Freitas, H. Velten, Eur. Phys. J. C 75, 597 (2015)

    Article  ADS  Google Scholar 

  66. J. Alexandre, Phys. Rev. D 92, 123524 (2015)

    Article  ADS  Google Scholar 

  67. K. Schroven, M. List, C. Lämmerzahl, Phys. Rev. D 92, 124008 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  68. D. Marsh, A.R. Pop, Mon. Not. R. Astron. 451, 2479 (2015)

    Article  ADS  Google Scholar 

  69. J. Eby, C. Kouvaris, N.G. Nielsen, L.C.R. Wijewardhana, JHEP 02, 028 (2016)

    Article  ADS  Google Scholar 

  70. J.A.R. Cembranos, A.L. Maroto, S.J. Núñez Jareño, JHEP 03, 013 (2016)

    Article  ADS  Google Scholar 

  71. E. Braaten, A. Mohapatra, H. Zhang, Phy. Rev. Lett. 117, 121801 (2016)

    Article  ADS  Google Scholar 

  72. S. Davidson, T. Schwetz, Phys. Rev. D 93, 123509 (2016)

    Article  ADS  Google Scholar 

  73. B. Schwabe, J. Niemeyer, J. Engels, Phys. Rev. D 94, 043513 (2016)

    Article  ADS  Google Scholar 

  74. J. Fan, Phys. Dark Univ. 14, 84 (2016)

    Article  Google Scholar 

  75. E. Calabrese, D.N. Spergel, Mon. Not. R. Astron. Soc. 460, 4397 (2016)

    Article  ADS  Google Scholar 

  76. D. Marsh, Phys. Rep. 643, 1 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  77. P.H. Chavanis, Phys. Rev. D 94, 083007 (2016)

    Article  ADS  Google Scholar 

  78. P.H. Chavanis, T. Matos, Eur. Phys. J. Plus 132, 30 (2017)

    Article  Google Scholar 

  79. L. Hui, J. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95, 043541 (2017)

    Article  ADS  Google Scholar 

  80. J. Zhang, Y.S. Tsai, K. Cheung, M. Chu, arXiv:1611.00892

  81. D.G. Levkov, A.G. Panin, I.I. Tkachev, Phys. Rev. Lett. 118, 011301 (2017)

    Article  ADS  Google Scholar 

  82. A. Suárez, P.H. Chavanis, Phys. Rev. D 95, 063515 (2017)

    Article  ADS  Google Scholar 

  83. B. Li, T. Rindler-Daller, P.R. Shapiro, arXiv:1611.07961

  84. E. Madelung, Z. Phys. 40, 322 (1927)

    Article  ADS  Google Scholar 

  85. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  86. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  87. B. Moore, T. Quinn, F. Governato, J. Stadel, G. Lake, Mon. Not. R. Acad. Sci. 310, 1147 (1999)

    Article  ADS  Google Scholar 

  88. A. Klypin, A.V. Kravtsov, O. Valenzuela, F. Prada, Astrophys. J. 522, 82 (1999)

    Article  ADS  Google Scholar 

  89. B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, P. Tozzi, Astrophys. J. Lett. 524, L19 (1999)

    Article  ADS  Google Scholar 

  90. M. Boylan-Kolchin, J.S. Bullock, M. Kaplinghat, Mon. Not. R. Acad. Sci. 415, L40 (2011)

    ADS  Google Scholar 

  91. J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 462, 563 (1996)

    Article  ADS  Google Scholar 

  92. A. Burkert, Astrophys. J. 447, L25 (1995)

    Article  ADS  Google Scholar 

  93. G. Kauffmann, S.D.M. White, B. Guiderdoni, Mon. Not. R. Astron. Soc. 264, 201 (1993)

    Article  ADS  Google Scholar 

  94. H.J. de Vega, P. Salucci, N.G. Sanchez, Mon. Not. R. Astron. Soc. 442, 2717 (2014)

    Article  ADS  Google Scholar 

  95. V. Domcke, A. Urbano, JCAP 01, 002 (2015)

    Article  ADS  Google Scholar 

  96. R. Ruffini, C.R. Argüelles, J.A. Rueda, Mon. Not. R. Astron. Soc. 451, 622 (2015)

    Article  ADS  Google Scholar 

  97. P.H. Chavanis, M. Lemou, F. Méhats, Phys. Rev. D 91, 063531 (2015)

    Article  ADS  Google Scholar 

  98. P.H. Chavanis, M. Lemou, F. Méhats, Phys. Rev. D 92, 123527 (2015)

    Article  ADS  Google Scholar 

  99. P.H. Chavanis, Eur. Phys. J. Plus 130, 130 (2015)

    Article  Google Scholar 

  100. P.H. Chavanis, Phys. Lett. B 758, 59 (2016)

    Article  ADS  Google Scholar 

  101. R. Ruffini, S. Bonazzola, Phys. Rev. 187, 1767 (1969)

    Article  ADS  Google Scholar 

  102. F.S. Guzmán, L.A. Ureña-López, Phys. Rev. D 69, 124033 (2004)

    Article  ADS  Google Scholar 

  103. F.S. Guzmán, L.A. Ureña-López, Astrophys. J. 645, 814 (2006)

    Article  ADS  Google Scholar 

  104. E. Seidel, W.M. Suen, Phys. Rev. Lett. 72, 2516 (1994)

    Article  ADS  Google Scholar 

  105. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967)

    Article  ADS  Google Scholar 

  106. J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987)

  107. P.H. Chavanis, J. Sommeria, R. Robert, Astrophys. J. 471, 385 (1996)

    Article  ADS  Google Scholar 

  108. P.H. Chavanis, Mon. Not. R. Astron. Soc. 300, 981 (1998)

    Article  ADS  Google Scholar 

  109. P.H. Chavanis, Statistical mechanics of violent relaxation in stellar systems, in Multiscale Problems in Science and Technology, edited by N. Antonić, C.J. van Duijn, W. Jäger, A. Mikelić (Springer, 2002)

  110. N. Bogoliubov, J. Phys. 11, 23 (1947)

    Google Scholar 

  111. E.P. Gross, Ann. Phys. 4, 57 (1958)

    Article  ADS  Google Scholar 

  112. E.P. Gross, Nuovo Cimento 20, 454 (1961)

    Article  Google Scholar 

  113. E.P. Gross, J. Math. Phys. 4, 195 (1963)

    Article  ADS  Google Scholar 

  114. L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  115. K. Huang, C.N. Yang, Phys. Rev. 105, 767 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  116. T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  117. P.H. Chavanis, Phys. Rev. E 84, 031101 (2011)

    Article  ADS  Google Scholar 

  118. C. Sire, P.H. Chavanis, Phys. Rev. E 66, 046133 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  119. P.H. Chavanis, C. Sire, Phys. Rev. E 69, 016116 (2004)

    Article  ADS  Google Scholar 

  120. P.H. Chavanis, Eur. Phys. J. B 62, 179 (2008)

    Article  ADS  Google Scholar 

  121. P.H. Chavanis, Entropy 17, 3205 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  122. P.H. Chavanis, Physica A 389, 375 (2010)

    Article  ADS  Google Scholar 

  123. P.H. Chavanis, Physica A 390, 1546 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  124. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  Google Scholar 

  125. L. de Broglie, J. Phys. 8, 225 (1927)

    Google Scholar 

  126. L. de Broglie, C. R. Acad. Sci. Paris 185, 380 (1927)

    Google Scholar 

  127. L. de Broglie, C. R. Acad. Sci. Paris 185, 1118 (1927)

    Google Scholar 

  128. F. London, Z. Phys. 42, 375 (1927)

    Article  ADS  Google Scholar 

  129. P. Ehrenfest, Z. Phys. 45, 455 (1927)

    Article  ADS  Google Scholar 

  130. P.H. Chavanis, arXiv:1612.02323

  131. L. Onsager, Nuovo Cimento 6, 279 (1949)

    Article  MathSciNet  Google Scholar 

  132. R.P. Feynman, Progress in Low Temperature Physics, Vol. 1 (North-Holland, Amsterdam, 1955)

  133. R.P. Feynman, Physica 24, 18 (1958)

    Article  ADS  Google Scholar 

  134. P.A.M. Dirac, Proc. R. Soc. A 133, 60 (1931)

    Article  ADS  Google Scholar 

  135. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935)

    Article  Google Scholar 

  136. R.A. Fisher, Proc. Cambridge Philos. Soc. 22, 700 (1925)

    Article  ADS  Google Scholar 

  137. E. Madelung, Naturwiss. 14, 1004 (1926)

    Article  ADS  Google Scholar 

  138. D. Holm, J. Marsden, T. Ratiu, A. Weinstein, Phys. Rep. 123, 1 (1985)

    Article  ADS  Google Scholar 

  139. P.H. Chavanis, Eur. Phys. J. B 70, 73 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  140. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, 1959)

  141. H. Poincaré, Acta Math. 7, 259 (1885)

    Article  MathSciNet  Google Scholar 

  142. J. Katz, Mon. Not. R. Astron. Soc. 183, 765 (1978)

    Article  ADS  Google Scholar 

  143. P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006)

    Article  ADS  Google Scholar 

  144. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover, 1958)

  145. K. Huang, Statistical Mechanics (John Wiley & Sons, 1966)

  146. P.H. Chavanis, C. R. Phys. 7, 331 (2006)

    Article  ADS  Google Scholar 

  147. P.H. Chavanis, Eur. Phys. J. B 57, 391 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  148. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  149. P.H. Chavanis, Int. J. Mod. Phys. B 26, 1241002 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  150. P.H. Chavanis, Phys. Rev. D 76, 023004 (2007)

    Article  ADS  Google Scholar 

  151. P.A.M. Dirac, Proc. Camb. Phil. Soc. 26, 376 (1930)

    Article  ADS  Google Scholar 

  152. J.C. Slater, Phys. Rev. 81, 385 (1951)

    Article  ADS  Google Scholar 

  153. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  154. C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation (Springer, 1999)

  155. U. Frisch, Turbulence (Cambridge, University Press, 1995)

  156. D. McLaughlin, R. Pudritz, Astrophys. J. 469, 194 (1996)

    Article  ADS  Google Scholar 

  157. P.H. Chavanis, C. Sire, Physica A 375, 140 (2007)

    Article  ADS  Google Scholar 

  158. I. Bialynicki-Birula, J. Mycielski, Ann. Phys. 100, 62 (1976)

    Article  ADS  Google Scholar 

  159. C.G. Shull, D.K. Atwood, J. Arthur, M.A. Horne, Phys. Rev. Lett. 44, 765 (1980)

    Article  ADS  Google Scholar 

  160. R. Gähler, A.G. Klein, A. Zeilinger, Phys. Rev. A 23, 1611 (1981)

    Article  ADS  Google Scholar 

  161. C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, 2009)

  162. M.D. Kostin, J. Chem. Phys. 57, 3589 (1972)

    Article  ADS  Google Scholar 

  163. L. Nottale, Scale Relativity and Fractal Space-Time (Imperial College Press, 2011)

  164. F. Donato et al., Mon. Not. R. Astron. Soc. 397, 1169 (2009)

    Article  ADS  Google Scholar 

  165. P.H. Chavanis, in preparation

  166. E.C. Stoner, Philos. Mag. 7, 63 (1929)

    Article  Google Scholar 

  167. E.C. Stoner, Philos. Mag. 9, 944 (1930)

    Article  Google Scholar 

  168. M. Nauenberg, Astrophys. J. 175, 417 (1972)

    Article  ADS  Google Scholar 

  169. G. Baym, C.J. Pethick, Phys. Rev. Lett. 76, 6 (1996)

    Article  ADS  Google Scholar 

  170. V.M. Pérez-García, H. Michinel, J.I. Cirac, M. Lewenstein, P. Zoller, Phys. Rev. Lett. 77, 5320 (1996)

    Article  ADS  Google Scholar 

  171. P. Ledoux, C.L. Pekeris, Astrophys. J. 94, 124 (1941)

    Article  ADS  Google Scholar 

  172. P.H. Chavanis, C. Sire, Phys. Rev. E 73, 066103 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  173. P.H. Chavanis, Eur. Phys. J. Plus 129, 38 (2014)

    Article  Google Scholar 

  174. E. Schrödinger, Ann. Phys. 384, 361 (1926)

    Article  Google Scholar 

  175. C.W. Gardiner, J.R. Anglin, T.I.A. Fudge, J. Phys. B 35, 1555 (2002)

    Article  ADS  Google Scholar 

  176. S.P. Cockburn, N.P. Proukakis, Laser Phys. 19, 558 (2009)

    Article  ADS  Google Scholar 

  177. L.P. Pitaevskii, Sov. Phys. 35, 282 (1959)

    MathSciNet  Google Scholar 

  178. S. Choi, S.A. Morgan, K. Burnett, Phys. Rev. A 57, 4057 (1998)

    Article  ADS  Google Scholar 

  179. M. Tsubota, K. Kasamatsu, M. Ueda, Phys. Rev. A 65, 023603 (2002)

    Article  ADS  Google Scholar 

  180. J.H. Jeans, Astronomy and Cosmogony (Cambridge University Press, 1929)

  181. M. Kiessling, Adv. Appl. Math. 31, 132 (2003) see also [astro-ph/9910247]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavanis, PH. Dissipative self-gravitating Bose-Einstein condensates with arbitrary nonlinearity as a model of dark matter halos. Eur. Phys. J. Plus 132, 248 (2017). https://doi.org/10.1140/epjp/i2017-11544-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11544-3

Navigation