Skip to main content
Log in

Virial equation of state for a granular system

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The equation of state for an ideal gas is simple, which is \(P=nk_\textrm{B}T\). In the case of imperfect gases where mutual interactions among the constituents are important, pressure P can be expressed as the series expansion of density n with appropriate coefficients, known as virial coefficients \(B_m\). In this paper, we have obtained the first four virial coefficients for a model interaction potential \(\Phi (r)\) using multidimensional Monte-Carlo integration and importance sampling methods. Next, we perform molecular dynamics simulations with the same \(\Phi (r)\) for a many-particle system to obtain P as a function of T and n. We compare our numerical data with the virial equation of state.

Graphic Abstract

The plot of Mayer function f(r) as a function of radial distance r for \(\Theta (r)\) for different inverse temperature \(\beta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All of the data utilized in this manuscript will be made accessible upon reasonable request.

References

  1. S.J. Blundell, K.M. Blundell, Concepts Therm. Phys. (Oxford University Press, New York, 2009)

    Book  Google Scholar 

  2. R.K. Pathria, P.D. Beale, Stat. Mech. (Academic Press, London, 2021)

    Google Scholar 

  3. D.A. McQuarrie, Stat. Mech. (Harper & Row, New York, 1976)

    Google Scholar 

  4. S.I. Sandler, Introd. Appl. Stat. Thermodyn. (John Wiley & Sons Inc, New York, 2010)

    Google Scholar 

  5. B.M. McCoy, Adv. Stat. Mech. (Oxford University Press Inc., New York, 2010)

    Google Scholar 

  6. L. Boltzmann, Verslag. Gewonee Vergadering Afd. Natuurk. Nederlandse Akad. Wtensch. 7, 484 (1899)

    Google Scholar 

  7. M. Luban, A. Barum, J. Chem. Phys. 76, 3233 (1982)

    Article  ADS  Google Scholar 

  8. N. Clisby, B.M. McCoy, J. Stat. Phys. 114, 1343 (2004)

    Article  ADS  Google Scholar 

  9. I. Lyberg, J. Stat. Phys. 119, 747 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Kihara, Rev. Mod. Phys. 25, 831 (1953)

    Article  ADS  Google Scholar 

  11. S. Katsura, Phys. Rev. 115, 1417 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  12. J.A. Barker, J.J. Monaghan, J. Chem. Phys. 36, 2564 (1962)

    Article  ADS  Google Scholar 

  13. F.H. Ree, W.G. Hoover, J. Chem. Phys. 40, 939 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  14. F.H. Ree, W.G. Hoover, J. Chem. Phys. 46, 4181 (1967)

    Article  ADS  Google Scholar 

  15. E.J.J. van Rensburg, J. Phys. A Math. Gen. 26, 4805 (1993)

    Article  ADS  Google Scholar 

  16. S. Labík, J. Kolafa, A. Malijevský, Phys. Rev. E 71, 021105 (2005)

    Article  ADS  Google Scholar 

  17. N. Clisby, B.M. McCoy, J. Stat. Phys. 122, 15 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  18. H. Do, C. Feng, A.J. Schultz, D.A. Kofke, R.J. Wheatley, Phys. Rev. E 94, 013301 (2016)

    Article  ADS  Google Scholar 

  19. A.J.M. Garrett, J. Phys. A Math. Gen. 13, 379 (1980)

    Article  ADS  Google Scholar 

  20. J.A. Barker, Proc. R. Soc. Lond. A. Math. Phys. Sci. 377, 425 (1980)

    ADS  Google Scholar 

  21. J.A. Barker, P.J. Leonard, A. Pompe, J. Chem. Phys. 44, 4206 (1966)

    Article  ADS  Google Scholar 

  22. J.K. Singh, D.A. Kofke, Phys. Rev. Lett. 92, 220601 (2004)

    Article  ADS  Google Scholar 

  23. A.J. Schultz, D.A. Kofke, Mol. Phys. 107, 2309 (2009)

    Article  ADS  Google Scholar 

  24. C. Feng, A.J. Schultz, V. Chaudhary, D.A. Kofke, J. Chem. Phys. 143, 044504 (2015)

    Article  ADS  Google Scholar 

  25. M. Dixon, P. Hutchinson, Mol. Phys. 38, 739 (1979)

    Article  ADS  Google Scholar 

  26. R.J. Wheatley, Phys. Rev. Lett. 110, 200601 (2013)

    Article  ADS  Google Scholar 

  27. T.B. Tan, A.J. Schultz, D.A. Kofke, Mol. Phys. 109, 123 (2011)

    Article  ADS  Google Scholar 

  28. D.J. Naresh, J.K. Singh, Fluid Phase Equilib. 285, 36 (2009)

    Article  Google Scholar 

  29. K.M. Benjamin, A.J. Schultz, D.A. Kofke, J. Phys. Chem. C 111, 16021 (2007)

    Article  Google Scholar 

  30. K.M. Benjamin, J.K. Singh, A.J. Schultz, D.A. Kofke, J. Phys. Chem. B 111, 11463 (2007)

    Article  Google Scholar 

  31. V.G. Baonza, M. Caceres, J. Nunez, Fluid Phase Equilib. 78, 43 (1992)

    Article  Google Scholar 

  32. L.G. MacDowell, C. Menduina, C. Vega, E. de Miguel, Phys. Chem. Chem. Phys. 5, 2851 (2003)

  33. I. Nezbeda, W.R. Smith, Fluid Phase Equilib. 216, 183 (2004)

    Article  Google Scholar 

  34. C.J. Horowitz, A. Schwenk, Nucl. Phys. A 776, 55 (2006)

    Article  ADS  Google Scholar 

  35. G. Shen, C.J. Horowitz, E. O’connor, Phys. Rev. C 83, 065808 (2011)

    Article  ADS  Google Scholar 

  36. A.J. Schultz, D.A. Kofke, J. Chem. Phys. 157, 190901 (2022)

  37. L.G. MacDowell, C. Menduina, C. Vega, E. de Miguel, J. Chem. Phys. 119, 11368 (2003)

    ADS  Google Scholar 

  38. K.K. Mon, Phys. Rev. E 97, 052114 (2018)

  39. G. Shen, C.J. Horowitz, S. Teige, Phys. Rev. C 82, 045802 (2010)

    Article  ADS  Google Scholar 

  40. N.V. Brilliantov, T. Poschel, Kinetic Theory of Granular Gases (Oxford University Press, Oxford, 2004)

    Book  Google Scholar 

  41. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  42. I.M. Askerov, E. Somuncu, B.A. Mamedov, Can. J. Phys. 96, 716 (2018)

    Article  ADS  Google Scholar 

  43. B.A. Mamedov, E. Somuncu, I.M. Askerov, AIP Conf. Proc. 1759, 020063 (2016)

    Article  Google Scholar 

  44. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic Press, London, 2001)

    Google Scholar 

  45. H. Gould, J. Tobochnik, W. Christian, An Introduction to Computer Simulation Methods, 3rd edn. (revised), San Francisco (2007)

  46. A.J. Schultz, N.S. Barlow, V. Chaudhary, D.A. Kofke, Mol. Phys. 111, 535 (2013)

    Article  ADS  Google Scholar 

  47. E.M. Sevick, P.A. Monson, J. Chem. Phys. 94, 3070 (1991)

    Article  ADS  Google Scholar 

  48. J.S. Liu, Monte Carlo Strategies in Scientific Computing (Springer, New York, 2004)

    Book  Google Scholar 

  49. P. Das, S. Puri, M. Schwartz, Phys. Rev. E 94, 032907 (2016)

    Article  ADS  Google Scholar 

  50. P. Das, S. Puri, M. Schwartz, Granular Matter 20, 15 (2017)

    Article  Google Scholar 

  51. P. Das, S. Puri, M. Schwartz, Phys. Rev. E 102, 042905 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

SH acknowledges financial support from IISER Mohali through a Junior Research Fellowship. PD acknowledges financial support from SERB, India through a start-up research grant (SRG/2022/000105).

Author information

Authors and Affiliations

Authors

Contributions

PD proposed the problem and develop the program for molecular dynamics simulation. SH performed the all the analytical and numerical work with the help of PD. The paper was written by PD.

Corresponding author

Correspondence to Prasenjit Das.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howlader, S., Das, P. Virial equation of state for a granular system. Eur. Phys. J. E 47, 20 (2024). https://doi.org/10.1140/epje/s10189-024-00412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-024-00412-z

Navigation