Skip to main content

Advertisement

Log in

Granular fluids with solid friction and heating

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We perform large-scale molecular dynamics simulations to study heated granular fluids in three dimensions. Granular particles dissipate their kinetic energy due to solid frictional interaction with other particles. The velocity of each particle is perturbed by a uniformly-distributed random noise, which mimics the heating. At the early stage of evolution, the kinetic energy of the system decays with time and reaches a steady state at a later stage. The velocity distribution in the steady state shows a non-Gaussian distribution. This has been characterized by using the Sonine polynomial expansion for a wide range of densities. Particles show diffusive motion for densities below the jamming density \(\phi _\mathrm{J}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jaeger, H.M., Nagel, S.R.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996)

    Article  ADS  Google Scholar 

  2. de Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374–S382 (1999)

    Article  Google Scholar 

  3. Aranson, I.S., Tsimring, L.S.: Patterns and collective behavior in granular media: theoretical concepts. Rev. Mod. Phys. 78, 641–692 (2006)

    Article  ADS  Google Scholar 

  4. Duran, J.: Sands, Powders and Grains: An Introduction to the Physics of Granular Materials. Springer, New York (1994)

    Google Scholar 

  5. Brilliantov, N.V., Poschel, T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  6. Das, P., Puri, S., Schwartz, M.: Clustering and velocity distributions in granular gases cooling by solid friction. Phys. Rev. E 94, 032907 (2016)

    Article  ADS  Google Scholar 

  7. Blumenfeld, R., Edwards, S.F., Schwartz, M.: da Vinci fluids, catch-up dynamics and dense granular flow. Eur. Phys. J. E 32(4), 333–338 (2010)

    Article  Google Scholar 

  8. Schwartz, M., Blumenfeld, R.: Plug flow formation and growth in da Vinci fluids. Granul. Matter 13(3), 241–245 (2011)

    Article  Google Scholar 

  9. Pöschel, T., Luding, S.: Granular Gases. Springer, Heidelberg (2001)

    Book  Google Scholar 

  10. Das, S.K., Puri, S.: Kinetics of inhomogeneous cooling in granular fluids. Phys. Rev. E 68, 011302 (2003)

    Article  ADS  Google Scholar 

  11. Das, S.K., Puri, S.: Pattern formation in the inhomogeneous cooling state of granular fluids. Europhys. Lett. 61, 749–755 (2003)

    Article  ADS  Google Scholar 

  12. Ahmad, S.R., Puri, S.: Velocity distributions in a freely evolving granular gas. Europhys. Lett. 75, 56–62 (2006)

    Article  ADS  Google Scholar 

  13. Ahmad, S.R., Puri, S.: Velocity distributions and aging in a cooling granular gas. Phys. Rev. E 75, 031302 (2007)

    Article  ADS  Google Scholar 

  14. Haff, P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401–430 (1983)

    Article  ADS  MATH  Google Scholar 

  15. Goldhirsch, I., Zanetti, G.: Clustering instability in dissipative gases. Phys. Rev. Lett. 70, 1619–1622 (1993)

    Article  ADS  Google Scholar 

  16. Goldhirsch, I., Tan, M.-L., Zanetti, G.: A molecular dynamical study of granular fluids: the unforced granular gas. J. Sci. Comput. 8(1), 1–40 (1993)

    Article  MATH  Google Scholar 

  17. Brilliantov, N.V., Krapivsky, P.L., Bodrova, A., Spahn, F., Hayakawa, H., Stadnichuk, V., Schmidt, J.: Size distribution of particles in Saturns rings from aggregation and fragmentation. Proc. Natl. Acad. Sci. USA 112, 9536–9541 (2015)

    Article  ADS  Google Scholar 

  18. du Pont, S.C., Gondret, P., Perrin, B., Rabaud, M.: Granular avalanches in fluids. Phys. Rev. Lett. 90, 044301 (2003)

    Article  ADS  Google Scholar 

  19. Gravish, N., Goldman, D.I.: Effect of volume fraction on granular avalanche dynamics. Phys. Rev. E 90, 032202 (2014)

    Article  ADS  Google Scholar 

  20. Montanero, J.M., Santos, A.: Computer simulation of uniformly heated granular fluids. Granul. Matter 2(2), 53–64 (2000)

    Article  Google Scholar 

  21. van Noije, T.P.C., Ernst, M.H.: Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1(2), 57–64 (1998)

    Article  Google Scholar 

  22. Schmidt, J., Ohtsuki, K., Rappaport, N., Salo, H., Spahn, F.: Dynamics of Saturn’s dense rings. In: Dougherty, M.K., Esposito, L.W., Krimigis, S.M. (eds.) Saturn from Cassini-Huygens, the Structure of Saturn’s Rings, pp. 413–458. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Bridges, F.G., Hatzes, A., Lin, D.N.C.: Structure, stability and evolution of Saturn’s rings. Nature 309, 333–335 (1984)

    Article  ADS  Google Scholar 

  24. Midi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14(4), 341–365 (2004)

    Article  Google Scholar 

  25. Melo, F., Umbanhowar, P.B., Swinney, H.L.: Hexagons, kinks, and disorder in oscillated granular layers. Phys. Rev. Lett. 75, 3838–3941 (1995)

    Article  ADS  Google Scholar 

  26. Umbanhowar, P.B., Melo, F., Swinney, H.L.: Localized excitations in a vertically vibrated granular layer. Nature 382, 793–796 (1996)

    Article  ADS  Google Scholar 

  27. Ristow, G.H.: Pattern Formation in Granular Materials. Springer, Heidelberg (2000)

    Google Scholar 

  28. Zik, O., Levine, D., Lipson, S.G., Shtrikman, S., Stavans, J.: Rotationally induced segregation of granular materials. Phys. Rev. Lett. 73, 644–647 (1994)

    Article  ADS  Google Scholar 

  29. Puri, S., Hayakawa, H.: Dynamical behaviour of rotated granular mixtures. Physica A 270, 115–124 (1999)

    Article  ADS  Google Scholar 

  30. Puri, S., Hayakawa, H.: Segregation of granular mixtures in a rotating drum. Physica A 290, 218–242 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Bocquet, L., Losert, W., Schalk, D., Lubensky, T.C., Gollub, J.P.: Granular shear flow dynamics and forces: experiment and continuum theory. Phys. Rev. E 65, 011307 (2001)

    Article  ADS  Google Scholar 

  32. Wildman, R.D., Parker, D.J.: Coexistence of two granular temperatures in binary vibrofluidized beds. Phys. Rev. Lett. 88, 064301 (2002)

    Article  ADS  Google Scholar 

  33. Feitosa, K., Menon, N.: Breakdown of energy equipartition in a 2D binary vibrated granular gas. Phys. Rev. Lett. 88, 198301 (2002)

    Article  ADS  Google Scholar 

  34. Aranson, I.S., Olafsen, J.S.: Velocity fluctuations in electrostatically driven granular media. Phys. Rev. E 66, 061302 (2002)

    Article  ADS  Google Scholar 

  35. Snezhko, A., Aranson, I.S., Kwok, W.-K.: Structure formation in electromagnetically driven granular media. Phys. Rev. Lett. 94, 108002 (2005)

    Article  ADS  Google Scholar 

  36. Salueña, C., Pöschel, T., Esipov, S.E.: Dissipative properties of vibrated granular materials. Phys. Rev. E 59, 4422–4425 (1999)

    Article  ADS  Google Scholar 

  37. Barrat, A., Trizac, E.: Lack of energy equipartition in homogeneous heated binary granular mixtures. Granul. Matter 4, 57–63 (1998)

    Article  MATH  Google Scholar 

  38. Pagnani, R., Marconi, U.M.B., Puglisi, A.: Driven low density granular mixtures. Phys. Rev. E 66, 051304 (2002)

    Article  ADS  Google Scholar 

  39. Murayama, Y., Sano, M.: Transition from Gaussian to non-Gaussian velocity distribution functions in a vibrated granular bed. J. Phys. Soc. Jpn. 67, 1826–1829 (1998)

    Article  ADS  Google Scholar 

  40. Peng, G., Ohta, T.: Scaling and correlations in heated granular materials. J. Phys. Soc. Jpn. 67, 2561–2564 (1998)

    Article  ADS  Google Scholar 

  41. van Noije, T.P.C., Ernst, M.H., Trizac, E., Pagonabarraga, I.: Randomly driven granular fluids: large-scale structure. Phys. Rev. E 59, 4326–4341 (1999)

    Article  ADS  Google Scholar 

  42. Kawarada, A., Hayakawa, H.: Non-Gaussian velocity distribution function in a vibrating granular bed. J. Phys. Soc. Jpn. 73, 2037–2040 (2004)

    Article  ADS  MATH  Google Scholar 

  43. Williams, D.R.M., MacKintosh, F.C.: Driven granular media in one dimension: correlations and equation of state. Phys. Rev. E 54, R9–R12 (1996)

    Article  ADS  Google Scholar 

  44. Williams, D.R.M.: Driven granular media and dissipative gases: correlations and liquid-gas phase transitions. Physica A 233, 718–729 (1996)

    Article  ADS  Google Scholar 

  45. Bodrova, A., Dubey, A.K., Puri, S., Brilliantov, N.V.: Intermediate regimes in granular Brownian motion: superdiffusion and subdiffusion. Phys. Rev. Lett. 109, 178001 (2012)

    Article  ADS  Google Scholar 

  46. Dubey, A.K., Bodrova, A., Puri, S., Brilliantov, N.V.: Velocity distribution function and effective restitution coefficient for a granular gas of viscoelastic particles. Phys. Rev. E 87, 062202 (2013)

    Article  ADS  Google Scholar 

  47. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1987)

    MATH  Google Scholar 

  48. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, New York (2002)

    MATH  Google Scholar 

  49. Rapaport, D.C.: The Art of Molecular Dynamics Simulation. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  50. Santos, A.: Transport coefficients of \(d\)-dimensional inelastic Maxwell models. Physica A 321, 442–466 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Hayakawa, H.: Hydrodynamics of driven granular gases. Phys. Rev. E 68, 031304 (2003)

    Article  ADS  Google Scholar 

  52. Chamorro, M.G., Vega Reyes, F., Garzo, V.: Non-Newtonian hydrodynamics for a dilute granular suspension under uniform shear flow. Phys. Rev. E 92, 052205 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  53. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  54. de Gennes, P.G.: Brownian motion with dry friction. J. Stat. Phys. 119, 953–962 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Hayakawa, H.: Langevin equation with Coulomb friction. Physica D 205, 48–56 (2005)

    Article  ADS  MATH  Google Scholar 

  56. Das, P., Puri, S., Schwartz, M.: Single particle Brownian motion with solid friction. Eur. Phys. J. E 40, 60 (2017)

    Article  Google Scholar 

  57. Gnoli, A., Puglisi, A., Touchette, H.: Granular Brownian motion with dry friction. Europhys. Lett. 102, 14002 (2013)

    Article  ADS  Google Scholar 

  58. Gnoli, A., Petri, A., Dalton, F., Pontuale, G., Gradenigo, G., Sarracino, A., Puglisi, A.: Brownian ratchet in a thermal bath driven by Coulomb friction. Phys. Rev. Lett. 110, 120601 (2013)

    Article  ADS  Google Scholar 

  59. Burton, J.C., Lu, P.Y., Nagel, S.R.: Collision dynamics of particle clusters in a two-dimensional granular gas. Phys. Rev. E 88, 062204 (2013)

    Article  ADS  Google Scholar 

  60. Berthier, L., Kob, W.: The Monte Carlo dynamics of a binary Lennard-Jones glass-forming mixture. J. Phys. Condens. Matter 19, 205130 (2007)

    Article  ADS  Google Scholar 

  61. Santos, A., Montanero, J.M.: The second and third Sonine coefficients of a freely cooling granular gas revisited. Granul. Matter 11(3), 157–168 (2009)

    Article  MATH  Google Scholar 

  62. Gao, Y., Kilfoil, M.L.: Intermittent and spatially heterogeneous single-particle dynamics close to colloidal gelation. Phys. Rev. E 79, 051406 (2009)

    Article  ADS  Google Scholar 

  63. Fodor, E., Hayakawa, H., Visco, P., van Wijland, F.: Active cage model of glassy dynamics. Phys. Rev. E 94, 012610 (2016)

    Article  ADS  Google Scholar 

  64. Reis, P.M., Ingale, R.A., Shattuck, M.D.: Caging dynamics in a granular fluid. Phys. Rev. Lett. 98, 188301 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PD acknowledges financial support from Council of Scientific and Industrial Research, India. SP is grateful to UGC, India for support through an Indo-Israeli joint project. He is also grateful to DST, India for support through a J. C. Bose fellowship. The research of MS, Grant Number 839/14, was supported by the ISF within the ISF-UGC Joint Research Program Framework.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Puri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Puri, S. & Schwartz, M. Granular fluids with solid friction and heating. Granular Matter 20, 15 (2018). https://doi.org/10.1007/s10035-018-0789-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-018-0789-y

Keywords

Navigation