Skip to main content
Log in

Diffusion coefficients and MSD measurements on curved membranes and porous media

  • Topical Review - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study some geometric aspects that influence the transport properties of particles that diffuse on curved surfaces. We compare different approaches to surface diffusion based on the Laplace–Beltrami operator adapted to predict concentration along entire membranes, confined subdomains along surfaces, or within porous media. Our goal is to summarize, firstly, how diffusion in these systems results in different types of diffusion coefficients and mean square displacement measurements, and secondly, how these two factors are affected by the concavity of the surface, the shape of the possible barriers or obstacles that form the available domains, the sinuosity, tortuosity, and constrictions of the trajectories and even how the observation plane affects the measurements of the diffusion. In addition to presenting a critical and organized comparison between different notions of MSD, in this review, we test the correspondence between theoretical predictions and numerical simulations by performing finite element simulations and illustrate some situations where diffusion theory can be applied. We briefly reviewed computational schemes for understanding surface diffusion and finally, discussed how this work contributes to understanding the role of surface diffusion transport properties in porous media and their relationship to other transport processes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A. Kapoor, R. Yang, C. Wong, Surface diffusion. Catal. Rev. Sci. Eng. 31(1–2), 129–214 (1989)

    Google Scholar 

  2. J.-H. Koh, P.C. Wankat, N.-H.L. Wang, Pore and surface diffusion and bulk-phase mass transfer in packed and fluidized beds. Ind. Eng. Chem. Res. 37(1), 228–239 (1998)

    Google Scholar 

  3. M.Y. Sengul, J. Guo, C.A. Randall, A.C. van Duin, Water-mediated surface diffusion mechanism enables the cold sintering process: a combined computational and experimental study. Angew. Chem. 131(36), 12550–12554 (2019)

    ADS  Google Scholar 

  4. L. Roybal, S. Sandler, Surface diffusion of adsorbable gases through porous media. AIChE J. 18(1), 39–42 (1972)

    Google Scholar 

  5. G. Allaire, H. Hutridurga, Homogenization of reactive flows in porous media and competition between bulk and surface diffusion. IMA J. Appl. Math. 77(6), 788–815 (2012)

    MathSciNet  MATH  Google Scholar 

  6. I. Medved’, R. Černỳ, Surface diffusion in porous media: a critical review. Microporous Mesoporous Mater. 142(2–3), 405–422 (2011)

  7. S. Sircar, M. Rao, Estimation of surface diffusion through porous media. AIChE J. 36(8), 1249–1254 (1990)

    Google Scholar 

  8. D. Weber, A.J. Sederman, M.D. Mantle, J. Mitchell, L.F. Gladden, Surface diffusion in porous catalysts. Phys. Chem. Chem. Phys. 12(11), 2619–2624 (2010)

    Google Scholar 

  9. G. Antczak, G. Ehrlich, Jump processes in surface diffusion. Surf. Sci. Rep. 62(2), 39–61 (2007)

    ADS  Google Scholar 

  10. W. Ren, G. Li, S. Tian, M. Sheng, L. Geng, Adsorption and surface diffusion of supercritical methane in shale. Ind. Eng. Chem. Res. 56(12), 3446–3455 (2017)

    Google Scholar 

  11. G.L. Kellogg, Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces. Surf. Sci. Rep. 21(1–2), 1–88 (1994)

    ADS  Google Scholar 

  12. G. Kellogg, T. Tsong, P. Cowan, Direct observation of surface diffusion and atomic interactions on metal surfaces. Surf. Sci. 70(1), 485–519 (1978)

    ADS  Google Scholar 

  13. A. Tuchlenski, P. Uchytil, A. Seidel-Morgenstern, An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci. 140(2), 165–184 (1998)

    Google Scholar 

  14. J.-G. Choi, D. Do, H. Do, Surface diffusion of adsorbed molecules in porous media: monolayer, multilayer, and capillary condensation regimes. Ind. Eng. Chem. Res. 40(19), 4005–4031 (2001)

    Google Scholar 

  15. P. Schneider, J. Smith, Chromatographic study of surface diffusion. AIChE J. 14(6), 886–895 (1968)

    Google Scholar 

  16. S. Rutherford, D. Do, Review of time lag permeation technique as a method for characterisation of porous media and membranes. Adsorption 3(4), 283–312 (1997)

    Google Scholar 

  17. S.-T. Hwang, K. Kammermeyer, Surface diffusion in microporous media. Can. J. Chem. Eng. 44(2), 82–89 (1966)

    Google Scholar 

  18. K. Wu, X. Li, C. Wang, W. Yu, Z. Chen, Model for surface diffusion of adsorbed gas in nanopores of shale gas reservoirs. Ind. Eng. Chem. Res. 54(12), 3225–3236 (2015)

    Google Scholar 

  19. K. Wu, X. Li, C. Guo, C. Wang, Z. Chen et al., A unified model for gas transfer in nanopores of shale-gas reservoirs: coupling pore diffusion and surface diffusion. SPE J. 21(05), 1–583 (2016)

    Google Scholar 

  20. J. Yang, J. Čermáková, P. Uchytil, C. Hamel, A. Seidel-Morgenstern, Gas phase transport, adsorption and surface diffusion in a porous glass membrane. Catal. Today 104(2–4), 344–351 (2005)

    Google Scholar 

  21. J. Cai, D. Lin, H. Singh, W. Wei, S. Zhou, Shale gas transport model in 3d fractal porous media with variable pore sizes. Mar. Pet. Geol. 98, 437–447 (2018)

    Google Scholar 

  22. A. Ledesma-Durán, S. Hernández, I. Santamaría-Holek, Effect of surface diffusion on adsorption-desorption and catalytic kinetics in irregular pores. I. Local kinetics. J. Phys. Chem. C 121(27), 14544–14556 (2017)

    Google Scholar 

  23. A. Ledesma-Durán, S.I. Hernández, I. Santamaría-Holek, Effect of surface diffusion on adsorption-desorption and catalytic kinetics in irregular pores. II. Macro-kinetics. J. Phys. Chem. C 121(27), 14557–14565 (2017)

    Google Scholar 

  24. G. Rhead, Diffusion on surfaces. Surf. Sci. 47(1), 207–221 (1975)

    ADS  Google Scholar 

  25. H. Tamon, M. Okazaki, R. Toei, Prediction of surface flow coefficient of adsorbed gases on porous media. AIChE J. 31(7), 1226–1228 (1985)

    Google Scholar 

  26. J.A. Ochoa-Tapia, S. Whitaker et al., Bulk and surface diffusion in porous media: an application of the surface-averaging theorem. Chem. Eng. Sci. 48(11), 2061–2082 (1993)

    Google Scholar 

  27. S. Gustafsson, B. Halle, Diffusion on a flexible surface. J. Chem. Phys. 106(5), 1880–1887 (1997)

    ADS  Google Scholar 

  28. J. Kärger, R. Valiullin, Mass transfer in mesoporous materials: the benefit of microscopic diffusion measurement. Chem. Soc. Rev. 42(9), 4172–4197 (2013)

    Google Scholar 

  29. C. Chmelik, R. Gläser, J. Haase, S. Hwang, J. Kärger, Application of microimaging to diffusion studies in nanoporous materials. Adsorption 27(5), 819–840 (2021)

    Google Scholar 

  30. M. Danish, K.B. Ansari, M. Danish, A. Khatoon, R.A.K. Rao, S. Zaidi, R.A. Aftab, A comprehensive investigation of external mass transfer and intraparticle diffusion for batch and continuous adsorption of heavy metals using pore volume and surface diffusion model. Sep. Purif. Technol. 292, 120996 (2022)

    Google Scholar 

  31. T. Noël, Y. Cao, G. Laudadio, The fundamentals behind the use of flow reactors in electrochemistry. Acc. Chem. Res. 52(10), 2858–2869 (2019)

    Google Scholar 

  32. R.G. Plaza, F. Sanchez-Garduno, P. Padilla, R.A. Barrio, P.K. Maini, The effect of growth and curvature on pattern formation. J. Dyn. Diff. Equ. 16(4), 1093–1121 (2004)

    MathSciNet  MATH  Google Scholar 

  33. G. Chacón-Acosta, I. Pineda, L. Dagdug, Diffusion in narrow channels on curved manifolds. J. Chem. Phys. 139(21), 214115 (2013)

    ADS  Google Scholar 

  34. A. Ledesma-Durán, S. Hernández, I. Santamaría-Holek, Relation between the porosity and tortuosity of a membrane formed by disconnected irregular pores and the spatial diffusion coefficient of the Fick–Jacobs model. Phys. Rev. E 95(5), 052804 (2017)

    ADS  Google Scholar 

  35. P. Castro-Villarreal, Intrinsic and extrinsic measurement for Brownian motion. J. Stat. Mech. Theory Exp. 2014(5), 05017 (2014)

    MathSciNet  MATH  Google Scholar 

  36. Z. Xu, L. Gao, P. Chen, L.-T. Yan, Diffusive transport of nanoscale objects through cell membranes: a computational perspective. Soft Matter 16(16), 3869–3881 (2020)

    ADS  Google Scholar 

  37. P.F. Zito, A. Caravella, A. Brunetti, E. Drioli, G. Barbieri, Knudsen and surface diffusion competing for gas permeation inside silicalite membranes. J. Membr. Sci. 523, 456–469 (2017)

    Google Scholar 

  38. R. Uhlhorn, K. Keizer, A. Burggraaf, Gas and surface diffusion in modified \(\gamma \)-alumina systems. J. Membr. Sci. 46(2–3), 225–241 (1989)

    Google Scholar 

  39. P. Chen, Z. Huang, J. Liang, T. Cui, X. Zhang, B. Miao, L.-T. Yan, Diffusion and directionality of charged nanoparticles on lipid bilayer membrane. ACS Nano 10(12), 11541–11547 (2016)

    Google Scholar 

  40. L. Guo, J.Y. Har, J. Sankaran, Y. Hong, B. Kannan, T. Wohland, Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study. ChemPhysChem 9(5), 721–728 (2008)

    Google Scholar 

  41. P. Bennema, The importance of surface diffusion for crystal growth from solution. J. Cryst. Growth 5(1), 29–43 (1969)

    ADS  Google Scholar 

  42. A.A. Rulev, Y.O. Kondratyeva, L.V. Yashina, D.M. Itkis, Lithium planar deposition vs whisker growth: crucial role of surface diffusion. J. Phys. Chem. Lett. 11(24), 10511–10518 (2020)

    Google Scholar 

  43. J.Y. Delgado, P.R. Selvin, A revised view on the role of surface AMPAR mobility in tuning synaptic transmission: limitations, tools, and alternative views. Front. Synaptic Neurosci. 10, 21 (2018)

    Google Scholar 

  44. A. Penn, C. Zhang, F. Georges, L. Royer, C. Breillat, E. Hosy, J. Petersen, Y. Humeau, D. Choquet, Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors. Nature 549(7672), 384–388 (2017)

    ADS  Google Scholar 

  45. L. Cognet, L. Groc, B. Lounis, D. Choquet, Multiple routes for glutamate receptor trafficking: surface diffusion and membrane traffic cooperate to bring receptors to synapses. Sci. Signal. 2006(327), 13–13 (2006)

    Google Scholar 

  46. M. Chen, Y. Kang, T. Zhang, L. You, X. Li, Z. Chen, K. Wu, B. Yang, Methane diffusion in shales with multiple pore sizes at supercritical conditions. Chem. Eng. J. 334, 1455–1465 (2018)

    Google Scholar 

  47. B. Yang, Y. Kang, L. You, X. Li, Q. Chen, Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter. Fuel 181, 793–804 (2016)

    Google Scholar 

  48. Y. Li, H. Chen, K. Lim, H.D. Deng, J. Lim, D. Fraggedakis, P.M. Attia, S.C. Lee, N. Jin, J. Moškon et al., Fluid-enhanced surface diffusion controls intraparticle phase transformations. Nat. Mater. 17(10), 915–922 (2018)

    ADS  Google Scholar 

  49. A. Eftekhari, Surface diffusion and adsorption in supercapacitors. ACS Sustain. Chem. Eng. 7(4), 3692–3701 (2019)

    MathSciNet  Google Scholar 

  50. A. Ozden, S. Shahgaldi, X. Li, F. Hamdullahpur, A review of gas diffusion layers for proton exchange membrane fuel cells-with a focus on characteristics, characterization techniques, materials and designs. Prog. Energy Combust. Sci. 74, 50–102 (2019)

    Google Scholar 

  51. N. Amdursky, Y. Lin, N. Aho, G. Groenhof, Exploring fast proton transfer events associated with lateral proton diffusion on the surface of membranes. Proc. Natl. Acad. Sci. 116(7), 2443–2451 (2019)

    ADS  Google Scholar 

  52. M.G. Wolf, H. Grubmüller, G. Groenhof, Anomalous surface diffusion of protons on lipid membranes. Biophys. J . 107(1), 76–87 (2014)

    Google Scholar 

  53. K. Jacobson, P. Liu, B.C. Lagerholm, The lateral organization and mobility of plasma membrane components. Cell 177(4), 806–819 (2019)

    Google Scholar 

  54. X. Cheng, J.C. Smith, Biological membrane organization and cellular signaling. Chem. Rev. 119(9), 5849–5880 (2019)

    Google Scholar 

  55. K.J. Sladek, E.R. Gilliland, R.F. Baddour, Diffusion on surfaces. ii. correlation of diffusivities of physically and chemically adsorbed species. Ind. Eng. Chem. Fundam. 13(2), 100–105 (1974)

    Google Scholar 

  56. Y. Chen, R. Yang, Concentration dependence of surface diffusion and zeolitic diffusion. AIChE J. 37(10), 1579–1582 (1991)

    Google Scholar 

  57. B.M. Aizenbud, N.D. Gershon, Diffusion of molecules on biological membranes of nonplanar form. A theoretical study. Biophys. J . 38(3), 287–293 (1982)

    Google Scholar 

  58. M.P. Do Carmo, Differential Geometry of Curves and Surfaces: Revised and Updated, 2nd edn. (Courier Dover Publications, New York, 2016)

    MATH  Google Scholar 

  59. T.J. Willmore, An Introduction to Differential Geometry (Courier Corporation, 2013)

  60. J. Balakrishnan, Spatial curvature effects on molecular transport by diffusion. Phys. Rev. E 61(4), 4648 (2000)

    ADS  Google Scholar 

  61. M. Raible, A. Engel, Langevin equation for the rotation of a magnetic particle. Appl. Organomet. Chem. 18(10), 536–541 (2004)

    Google Scholar 

  62. A. Bonito, A. Demlow, R.H. Nochetto, Finite element methods for the Laplace–Beltrami operator, in Handbook of Numerical Analysis, vol. 21 (Elsevier, 2020), pp. 1–103

  63. E. Burman, P. Hansbo, M.G. Larson, K. Larsson, A. Massing, Finite element approximation of the Laplace–Beltrami operator on a surface with boundary. Numer. Math. 141, 141–172 (2019)

    MathSciNet  MATH  Google Scholar 

  64. A. Demlow, G. Dziuk, An adaptive finite element method for the Laplace–Beltrami operator on implicitly defined surfaces. SIAM J. Numer. Anal. 45(1), 421–442 (2007)

    MathSciNet  MATH  Google Scholar 

  65. B.C. Levy, R. Frezza, A.J. Krener, Modeling and estimation of discrete-time gaussian reciprocal processes. IEEE Trans. Autom. Control 35(9), 1013–1023 (1990). https://doi.org/10.1109/9.58529

    Article  MathSciNet  MATH  Google Scholar 

  66. D. Plewczyński, R. Hołyst, Approach to equilibrium of particles diffusing on curved surfaces. Phys. A Stat. Mech. Appl. 295(3–4), 371–378 (2001)

    MATH  Google Scholar 

  67. K. Yosida, Brownian motion on the surface of the 3-sphere. Ann. Math. Stat. 20(2), 292–296 (1949)

    MathSciNet  MATH  Google Scholar 

  68. A. Ghosh, J. Samuel, S. Sinha, A “Gaussian’’ for diffusion on the sphere. EPL (Europhys. Lett.) 98(3), 30003 (2012)

    ADS  Google Scholar 

  69. P. Castro-Villarreal, A. Villada-Balbuena, J.M. Méndez-Alcaraz, R. Castañeda-Priego, S. Estrada-Jiménez, A Brownian dynamics algorithm for colloids in curved manifolds. J. Chem. Phys. 140(21), 214115 (2014)

    ADS  Google Scholar 

  70. J. Faraudo, Diffusion equation on curved surfaces. I. theory and application to biological membranes. J. Chem. Phys. 116(13), 5831–5841 (2002)

    ADS  Google Scholar 

  71. R. Castañeda-Priego, P. Castro-Villarreal, S. Estrada-Jiménez, J.M. Méndez-Alcaraz, Brownian motion of free particles on curved surfaces. arXiv preprint arXiv:1211.5799 (2012)

  72. R. Goldman, Curvature formulas for implicit curves and surfaces. Comput. Aided Geom. Des. 22(7), 632–658 (2005)

    MathSciNet  MATH  Google Scholar 

  73. E. Hartmann, Numerical parameterization of curves and surfaces. Comput. Aided Geom. Des. 17(3), 251–266 (2000)

    MathSciNet  MATH  Google Scholar 

  74. Y. Zhong, L. Zhao, P.M. Tyrlik, G. Wang, Investigating diffusing on highly curved water-oil interface using three-dimensional single particle tracking. J. Phys. Chem. C 121(14), 8023–8032 (2017)

    Google Scholar 

  75. M. Renner, Y. Domanov, F. Sandrin, I. Izeddin, P. Bassereau, A. Triller, Lateral diffusion on tubular membranes: quantification of measurements bias. PLoS ONE 6(9), 25731 (2011)

    ADS  Google Scholar 

  76. Y.A. Domanov, S. Aimon, G.E. Toombes, M. Renner, F. Quemeneur, A. Triller, M.S. Turner, P. Bassereau, Mobility in geometrically confined membranes. Proc. Natl. Acad. Sci. 108(31), 12605–12610 (2011)

    ADS  Google Scholar 

  77. P. Castro-Villarreal, Brownian motion meets Riemann curvature. J. Stat. Mech. Theory Exp. 2010(08), 08006 (2010)

    Google Scholar 

  78. C.J.S. Klaus, K. Raghunathan, E. DiBenedetto, A.K. Kenworthy, Analysis of diffusion in curved surfaces and its application to tubular membranes. Mol. Biol. Cell 27(24), 3937–3946 (2016)

    Google Scholar 

  79. D. Assaely León Velasco, R. Glowinski, L. Héctor Juárez Valencia, On the controllability of diffusion processes on a sphere: a numerical study. ESAIM Control Optim. Calc. Var. 22(4), 1054–1077 (2016)

    MathSciNet  MATH  Google Scholar 

  80. A. León-Velasco, R. Glowinski, L.H. Juárez-Valencia, On the controllability of diffusion processes on the surface of a torus: a computational approach. Pac J Optim 11, 763–790 (2015)

    MathSciNet  MATH  Google Scholar 

  81. A. Ledesma-Durán, J. Munguía-Valadez, J.A. Moreno-Razo, S. Hernández, I. Santamaría-Holek, Entropic effects of interacting particles diffusing on spherical surfaces. Front. Phys. 9, 17 (2021)

    Google Scholar 

  82. A. Domínguez, Theory of anomalous collective diffusion in colloidal monolayers on a spherical interface. Phys. Rev. E 97(2), 022607 (2018)

    ADS  Google Scholar 

  83. L.A. Gheber, M. Edidin, A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys. J . 77(6), 3163–3175 (1999)

    Google Scholar 

  84. S. Munro, Lipid rafts: elusive or illusive? Cell 115(4), 377–388 (2003)

    Google Scholar 

  85. K. Jacobson, O.G. Mouritsen, R.G. Anderson, Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9(1), 7–14 (2007)

    Google Scholar 

  86. J. Štrancar, T. Koklič, Z. Arsov, Soft picture of lateral heterogeneity in biomembranes. J. Membr. Biol. 196(2), 135–146 (2003)

    Google Scholar 

  87. L.A. Bagatolli, To see or not to see: lateral organization of biological membranes and fluorescence microscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758(10), 1541–1556 (2006)

    Google Scholar 

  88. L.A. Bagatolli, J.H. Ipsen, A.C. Simonsen, O.G. Mouritsen, An outlook on organization of lipids in membranes: searching for a realistic connection with the organization of biological membranes. Prog. Lipid Res. 49(4), 378–389 (2010)

    Google Scholar 

  89. M. Carquin, L. D’Auria, H. Pollet, E.R. Bongarzone, D. Tyteca, Recent progress on lipid lateral heterogeneity in plasma membranes: from rafts to submicrometric domains. Prog. Lipid Res. 62, 1–24 (2016)

    Google Scholar 

  90. J.J. Kinnun, D. Bolmatov, M.O. Lavrentovich, J. Katsaras, Lateral heterogeneity and domain formation in cellular membranes. Chem. Phys. Lipid. 232, 104976 (2020)

    Google Scholar 

  91. M.-O. Coppens, T. Weissenberger, Q. Zhang, G. Ye, Nature-inspired, computer-assisted optimization of hierarchically structured zeolites. Adv. Mater. Interfaces 8(4), 2001409 (2021)

    Google Scholar 

  92. P. Peng, X.-H. Gao, Z.-F. Yan, S. Mintova, Diffusion and catalyst efficiency in hierarchical zeolite catalysts. Natl. Sci. Rev. 7(11), 1726–1742 (2020)

    Google Scholar 

  93. P.F. Zito, A. Caravella, A. Brunetti, E. Drioli, G. Barbieri, Discrimination among gas translation, surface and Knudsen diffusion in permeation through zeolite membranes. J. Membr. Sci. 564, 166–173 (2018)

    Google Scholar 

  94. P.F. Zito, A. Brunetti, G. Barbieri, Selective mass transport of CO2 containing mixtures through zeolite membranes. J. Membr. Sci. Res. 6(3), 333–343 (2020)

    Google Scholar 

  95. J. Jamnik, J. Fleig, M. Leonhardt, J. Maier, Apparent surface rate constants in diffusion problems flux constriction effects. J. Electrochem. Soc. 147(8), 3029 (2000)

    ADS  Google Scholar 

  96. R. Valiullin, P. Kortunov, J. Kärger, V. Timoshenko, Surface self-diffusion of organic molecules adsorbed in porous silicon. J. Phys. Chem. B 109(12), 5746–5752 (2005)

    Google Scholar 

  97. O. Geier, S. Vasenkov, J. Kärger, Pulsed field gradient nuclear magnetic resonance study of long–range diffusion in beds of NaX zeolite: evidence for different apparent tortuosity factors in the Knudsen and bulk regimes. J. Chem. Phys. 117(5), 1935–1938 (2002)

    ADS  Google Scholar 

  98. Y. Chen, B.C. Lagerholm, B. Yang, K. Jacobson, Methods to measure the lateral diffusion of membrane lipids and proteins. Methods 39(2), 147–153 (2006)

    Google Scholar 

  99. T. Appelhans, C.P. Richter, V. Wilkens, S.T. Hess, J. Piehler, K.B. Busch, Nanoscale organization of mitochondrial microcompartments revealed by combining tracking and localization microscopy. Nano Lett. 12(2), 610–616 (2012)

    ADS  Google Scholar 

  100. S.S. Mogre, A.I. Brown, E.F. Koslover, Getting around the cell: physical transport in the intracellular world. Phys. Biol. 17(6), 061003 (2020)

    Google Scholar 

  101. R. Zwanzig, Diffusion past an entropy barrier. J. Phys. Chem. 96(10), 3926–3930 (1992)

    Google Scholar 

  102. M. Mangeat, T. Guérin, D.S. Dean, Dispersion in two dimensional channels-the Fick–Jacobs approximation revisited. J. Stat. Mech. Theory Exp. 2017(12), 123205 (2017)

    MathSciNet  MATH  Google Scholar 

  103. X. Yang, C. Liu, Y. Li, F. Marchesoni, P. Hänggi, H. Zhang, Hydrodynamic and entropic effects on colloidal diffusion in corrugated channels. Proc. Natl. Acad. Sci. 114(36), 9564–9569 (2017)

    ADS  Google Scholar 

  104. G. Chacón-Acosta, I. Pineda, L. Dagdug, Effective one-dimensional diffusion on curved surfaces: catenoid and pseudosphere, in AIP Conference Proceedings, vol. 1579 (American Institute of Physics, 2014), pp. 112–120

  105. R.M. Bradley, Diffusion in a two-dimensional channel with curved midline and varying width: reduction to an effective one-dimensional description. Phys. Rev. E 80(6), 061142 (2009)

    ADS  Google Scholar 

  106. D. Reguera, J. Rubi, Kinetic equations for diffusion in the presence of entropic barriers. Phys. Rev. E 64(6), 061106 (2001)

    ADS  Google Scholar 

  107. I. Pineda, G. Chacón-Acosta, L. Dagdug, Diffusion coefficients for two-dimensional narrow asymmetric channels embedded on flat and curved surfaces. Eur. Phys. J. Special Top. 223(14), 3045–3062 (2014)

    ADS  Google Scholar 

  108. P. Kalinay, J. Percus, Projection of two-dimensional diffusion in a narrow channel onto the longitudinal dimension. J. Chem. Phys. 122(20), 204701 (2005)

    ADS  Google Scholar 

  109. P. Kalinay, Calculation of the mean first passage time tested on simple two-dimensional models. J. Chem. Phys. 126(19), 194708 (2007)

    ADS  Google Scholar 

  110. G. Forte, F. Cecconi, A. Vulpiani, Transport and fluctuation-dissipation relations in asymptotic and preasymptotic diffusion across channels with variable section. Phys. Rev. E 90(6), 062110 (2014)

    ADS  Google Scholar 

  111. A.M. Berezhkovskii, L. Dagdug, S.M. Bezrukov, From normal to anomalous diffusion in comb-like structures in three dimensions. J. Chem. Phys. 141(5), 054907 (2014)

    ADS  Google Scholar 

  112. A. Alexandre, M. Mangeat, T. Guérin, D. Dean, How stickiness can speed up diffusion in confined systems. Phys. Rev. Lett. 128(21), 210601 (2022)

    ADS  MathSciNet  Google Scholar 

  113. Y. Chávez, G. Chacón-Acosta, L. Dagdug, Effects of curved midline and varying width on the description of the effective diffusivity of Brownian particles. J. Phys. Condens. Matter 30(19), 194001 (2018)

    ADS  Google Scholar 

  114. A.A. García-Chung, G. Chacón-Acosta, L. Dagdug, On the covariant description of diffusion in two-dimensional confined environments. J. Chem. Phys. 142(6), 064105 (2015)

    ADS  Google Scholar 

  115. A.F. Voter, J.D. Doll, Transition state theory description of surface self-diffusion: comparison with classical trajectory results. J. Chem. Phys. 80(11), 5832–5838 (1984)

    ADS  Google Scholar 

  116. A. Ledesma-Durán, D.A. León-Velasco, G. Chacón-Acosta, L.H. Juárez-Valencia, Surface diffusion in narrow channels on curved domains. Phys. Rev. E 107(3), 034801 (2023)

    ADS  MathSciNet  Google Scholar 

  117. H. Brune, K. Bromann, H. Röder, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, J. No et al., Effect of strain on surface diffusion and nucleation. Phys. Rev. B 52(20), 14380 (1995)

    ADS  Google Scholar 

  118. D. Srolovitz, S. Safran, Capillary instabilities in thin films. II. kinetics. J. Appl. Phys. 60(1), 255–260 (1986)

    ADS  Google Scholar 

  119. G. Gilmer, P. Bennema, Simulation of crystal growth with surface diffusion. J. Appl. Phys. 43(4), 1347–1360 (1972)

    ADS  Google Scholar 

  120. L. Abelmann, C. Lodder, Oblique evaporation and surface diffusion. Thin Solid Films 305(1–2), 1–21 (1997)

    ADS  Google Scholar 

  121. A. Ledesma-Durán, S.I. Hernández-Hernández, I. Santamaría-Holek, Generalized Fick–Jacobs approach for describing adsorption-desorption kinetics in irregular pores under nonequilibrium conditions. J. Phys. Chem. C 120(14), 7810–7821 (2016)

    Google Scholar 

  122. H.S. Fogler, Essentials of Chemical Reaction Engineering (Pearson Education, 2010)

  123. J.J. Carberry, Chemical and Catalytic Reaction Engineering (Courier Corporation, New York, 2001)

    Google Scholar 

  124. C.F. Berg, Permeability description by characteristic length, tortuosity, constriction and porosity. Transp. Porous Media 103(3), 381–400 (2014)

    MathSciNet  Google Scholar 

  125. E. Petersen, Diffusion in a pore of varying cross section. AIChE J. 4(3), 343–345 (1958)

    Google Scholar 

  126. J.M. Zalc, S.C. Reyes, E. Iglesia, The effects of diffusion mechanism and void structure on transport rates and tortuosity factors in complex porous structures. Chem. Eng. Sci. 59(14), 2947–2960 (2004)

    Google Scholar 

  127. L. Shen, Z. Chen, Critical review of the impact of tortuosity on diffusion. Chem. Eng. Sci. 62(14), 3748–3755 (2007)

    Google Scholar 

  128. B. Ghanbarian, A.G. Hunt, R.P. Ewing, M. Sahimi, Tortuosity in porous media: a critical review. Soil Sci. Soc. Am. J. 77(5), 1461–1477 (2013)

    ADS  Google Scholar 

  129. J. Van Brakel, Pore space models for transport phenomena in porous media review and evaluation with special emphasis on capillary liquid transport. Powder Technol. 11(3), 205–236 (1975)

    Google Scholar 

  130. Z. Sun, X. Tang, G. Cheng, Numerical simulation for tortuosity of porous media. Microporous Mesoporous Mater. 173, 37–42 (2013)

    Google Scholar 

  131. D. Mu, Z.-S. Liu, C. Huang, N. Djilali, Determination of the effective diffusion coefficient in porous media including Knudsen effects. Microfluid. Nanofluidics 4(3), 257–260 (2008)

    Google Scholar 

  132. D. Mu, Z.-S. Liu, C. Huang, N. Djilali, Prediction of the effective diffusion coefficient in random porous media using the finite element method. J. Porous Mater. 14(1), 49–54 (2007)

    Google Scholar 

  133. R. Festa, E.G. d’Agliano, Diffusion coefficient for a Brownian particle in a periodic field of force I. Large friction limit. Phys. A Stat. Mech. Appl. 90(2), 229–244 (1978)

    Google Scholar 

  134. S. Lifson, J.L. Jackson, On the self-diffusion of ions in a polyelectrolyte solution. J. Chem. Phys. 36(9), 2410–2414 (1962)

    ADS  Google Scholar 

  135. J. Zhou, W. Fan, Y. Wang, Z. Xie, The essential mass transfer step in hierarchical/nano zeolite: surface diffusion. Natl. Sci. Rev. 7(11), 1630–1632 (2020)

    Google Scholar 

  136. L.-H. Chen, Y. Li, B.-L. Su, Hierarchy in materials for maximized efficiency. Natl. Sci. Rev. 7(11), 1626–1630 (2020)

    Google Scholar 

  137. O. Khanal, V. Kumar, F. Schlegel, A.M. Lenhoff, Estimating and leveraging protein diffusion on ion-exchange resin surfaces. Proc. Natl. Acad. Sci. 117(13), 7004–7010 (2020)

    ADS  Google Scholar 

  138. A.J. Krmpot, S.N. Nikolic, S. Oasa, D.K. Papadopoulos, M. Vitali, M. Oura, S. Mikuni, P. Thyberg, S. Tisa, M. Kinjo et al., Functional fluorescence microscopy imaging: quantitative scanning-free confocal fluorescence microscopy for the characterization of fast dynamic processes in live cells. Anal. Chem. 91(17), 11129–11137 (2019)

    Google Scholar 

  139. C. Zhou, W. Chen, S. Yang, Q. Ou, Z. Gan, Q. Bao, B. Jia, X. Wen, Determining in-plane carrier diffusion in two-dimensional perovskite using local time-resolved photoluminescence. ACS Appl. Mater. Interfaces 12(23), 26384–26390 (2020)

    Google Scholar 

  140. M.R. King, Apparent 2-d diffusivity in a ruffled cell membrane. J. Theor. Biol. 227(3), 323–326 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  141. E. Reister-Gottfried, S.M. Leitenberger, U. Seifert, Hybrid simulations of lateral diffusion in fluctuating membranes. Phys. Rev. E 75(1), 011908 (2007)

    ADS  Google Scholar 

  142. A. Gesper, S. Wennmalm, P. Hagemann, S.-G. Eriksson, P. Happel, I. Parmryd, Variations in plasma membrane topography can explain heterogenous diffusion coefficients obtained by fluorescence correlation spectroscopy. Front. Cell Dev. Biol. 8, 767 (2020)

    Google Scholar 

  143. S. Voci, B. Goudeau, G. Valenti, A. Lesch, M. Jovic, S. Rapino, F. Paolucci, S. Arbault, N. Sojic, Surface-confined electrochemiluminescence microscopy of cell membranes. J. Am. Chem. Soc. 140(44), 14753–14760 (2018)

    Google Scholar 

  144. P. Sarkar, A. Chattopadhyay, Exploring membrane lipid and protein diffusion by frap, in Analysis of Membrane Lipids (Springer, 2020), pp. 119–141

  145. E. Reister-Gottfried, S.M. Leitenberger, U. Seifert, Diffusing proteins on a fluctuating membrane: analytical theory and simulations. Phys. Rev. E 81(3), 031903 (2010)

    ADS  Google Scholar 

  146. R. Hołyst, D. Plewczyński, A. Aksimentiev, K. Burdzy, Diffusion on curved, periodic surfaces. Phys. Rev. E 60(1), 302 (1999)

    ADS  Google Scholar 

  147. N.S. Gov, Diffusion in curved fluid membranes. Phys. Rev. E 73(4), 041918 (2006)

    ADS  Google Scholar 

  148. B. Halle, S. Gustafsson, Diffusion in a fluctuating random geometry. Phys. Rev. E 55(1), 680 (1997)

    ADS  Google Scholar 

  149. P. Hänggi, H. Thomas, Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88(4), 207–319 (1982)

    ADS  MathSciNet  Google Scholar 

  150. D.R. Brillinger, A particle migrating randomly on a sphere, in Selected Works of David Brillinger (Springer, 2012), pp. 73–87

  151. L. Apaza, M. Sandoval, Brownian self-driven particles on the surface of a sphere. Phys. Rev. E 96(2), 022606 (2017)

    ADS  Google Scholar 

  152. L. Apaza, M. Sandoval, Active matter on Riemannian manifolds. Soft Matter 14(48), 9928–9936 (2018)

    ADS  Google Scholar 

  153. P. Castro-Villarreal, F.J. Sevilla, Active motion on curved surfaces. Phys. Rev. E 97(5), 052605 (2018)

    ADS  MathSciNet  Google Scholar 

  154. S.M. Leitenberger, E. Reister-Gottfried, U. Seifert, Curvature coupling dependence of membrane protein diffusion coefficients. Langmuir 24(4), 1254–1261 (2008)

    Google Scholar 

  155. E. Reister, U. Seifert, Lateral diffusion of a protein on a fluctuating membrane. EPL (Europhys. Lett.) 71(5), 859 (2005)

    ADS  Google Scholar 

  156. K.R. Hinkle, X. Wang, X. Gu, C.J. Jameson, S. Murad, Computational molecular modeling of transport processes in nanoporous membranes. Processes 6(8), 124 (2018)

    Google Scholar 

  157. O. Ramírez-Garza, J. Méndez-Alcaraz, P. González-Mozuelos, Effects of the curvature gradient on the distribution and diffusion of colloids confined to surfaces. Phys. Chem. Chem. Phys. 23(14), 8661–8672 (2021)

    Google Scholar 

  158. Y. Yang, B. Li, A simulation algorithm for Brownian dynamics on complex curved surfaces. J. Chem. Phys. 151(16), 164901 (2019)

    ADS  Google Scholar 

  159. A. Naji, F.L. Brown, Diffusion on ruffled membrane surfaces. J. Chem. Phys. 126(23), 06–611 (2007)

    Google Scholar 

  160. N.N. Batada, L.A. Shepp, D.O. Siegmund, M. Levitt, Spatial regulation and the rate of signal transduction activation. PLoS Comput. Biol. 2(5), 44 (2006)

    ADS  Google Scholar 

  161. M. Mazroui, Y. Boughaleb, Surface diffusion in systems of interacting Brownian particles. Int. J. Mod. Phys. B 15(16), 2193–2247 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  162. D. Shu, X. Gong, Curvature effect on surface diffusion: the nanotube. J. Chem. Phys. 114(24), 10922–10926 (2001)

    ADS  Google Scholar 

  163. S. Paquay, R. Kusters, A method for molecular dynamics on curved surfaces. Biophys. J. 110(6), 1226–1233 (2016)

    ADS  Google Scholar 

  164. A. Villada-Balbuena, A. Ortiz-Ambriz, P. Castro-Villarreal, P. Tierno, R. Castañeda-Priego, J.M. Méndez-Alcaraz, Single-file dynamics of colloids in circular channels: time scales, scaling laws and their universality. Phys. Rev. Res. 3(3), 033246 (2021)

    Google Scholar 

  165. F. Manca, P.-M. Déjardin, S. Giordano, Statistical mechanics of holonomic systems as a Brownian motion on smooth manifolds. Ann. Phys. 528(5), 381–393 (2016)

    MATH  Google Scholar 

  166. A.V. Gómez, F.J. Sevilla, A geometrical method for the Smoluchowski equation on the sphere. J. Stat. Mech. Theory Exp. 2021(8), 083210 (2021)

    MathSciNet  MATH  Google Scholar 

  167. E.V. Ramírez, C. Elvingson, An efficient linked list for molecular simulations on a spherical surface. J. Phys. A Math. Theor. 55(38), 385001 (2022)

    ADS  MathSciNet  MATH  Google Scholar 

  168. J.R. Frank, J. Guven, M. Kardar, H. Shackleton, Pinning of diffusional patterns by non-uniform curvature. Europhys. Lett. 127(4), 48001 (2019)

    ADS  Google Scholar 

  169. M. Polettini, Generally covariant state-dependent diffusion. J. Stat. Mech. Theory Exp. 2013(07), 07005 (2013)

    MathSciNet  MATH  Google Scholar 

  170. R.L.B. Selinger, A. Konya, A. Travesset, J.V. Selinger, Monte Carlo studies of the XY model on two-dimensional curved surfaces. J. Phys. Chem. B 115(48), 13989–13993 (2011)

    Google Scholar 

  171. H. Noguchi, G. Gompper, Meshless membrane model based on the moving least-squares method. Phys. Rev. E 73(2), 021903 (2006)

    ADS  Google Scholar 

  172. R.P. Mondescu, M. Muthukumar, Brownian motion and polymer statistics on certain curved manifolds. Phys. Rev. E 57(4), 4411 (1998)

    ADS  MathSciNet  Google Scholar 

  173. A.J. Spakowitz, Z.-G. Wang, Semiflexible polymer confined to a spherical surface. Phys. Rev. Lett. 91(16), 166102 (2003)

    ADS  Google Scholar 

  174. C.-H. Lin, Y.-C. Tsai, C.-K. Hu, Wrapping conformations of a polymer on a curved surface. Phys. Rev. E 75(3), 031903 (2007)

    ADS  Google Scholar 

  175. J. Wang, H. Gao, Brownian dynamics simulations of charged semiflexible polymers confined to curved surfaces. J. Mech. Behav. Biomed. Mater. 4(2), 174–179 (2011)

    Google Scholar 

  176. J.J. Cerdà, T. Sintes, A. Chakrabarti, Excluded volume effects on polymer chains confined to spherical surfaces. Macromolecules 38(4), 1469–1477 (2005)

    ADS  Google Scholar 

  177. S. Iliafar, J. Mittal, D. Vezenov, A. Jagota, Interaction of single-stranded DNA with curved carbon nanotube is much stronger than with flat graphite. J. Am. Chem. Soc. 136(37), 12947–12957 (2014)

    Google Scholar 

  178. P.P. Mitra, P.N. Sen, L.M. Schwartz, P. Le Doussal, Diffusion propagator as a probe of the structure of porous media. Phys. Rev. Lett. 68(24), 3555 (1992)

    ADS  Google Scholar 

  179. D.S. Grebenkov, Use, misuse, and abuse of apparent diffusion coefficients. Concepts Magn. Reson. Part A Educ. J. 36(1), 24–35 (2010)

    Google Scholar 

  180. D.S. Grebenkov, NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79(3), 1077 (2007)

    ADS  Google Scholar 

  181. D.S. Novikov, E. Fieremans, J.H. Jensen, J.A. Helpern, Random walks with barriers. Nat. Phys. 7(6), 508–514 (2011)

    Google Scholar 

  182. M. Spanner, S.K. Schnyder, F. Höfling, T. Voigtmann, T. Franosch, Dynamic arrest in model porous media-intermediate scattering functions. Soft Matter 9(5), 1604–1611 (2013)

    ADS  Google Scholar 

  183. M. Spanner, F. Höfling, S.C. Kapfer, K.R. Mecke, G.E. Schröder-Turk, T. Franosch, Splitting of the universality class of anomalous transport in crowded media. Phys. Rev. Lett. 116(6), 060601 (2016)

    ADS  Google Scholar 

  184. J. Kärger, D.M. Ruthven, R. Valiullin, Diffusion in nanopores: inspecting the grounds. Adsorption 27, 267–281 (2021)

    Google Scholar 

  185. J. Kärger, M. Avramovska, D. Freude, J. Haase, S. Hwang, R. Valiullin, Pulsed field gradient NMR diffusion measurement in nanoporous materials. Adsorption 27(3), 453–484 (2021)

    Google Scholar 

  186. A.V. Chechkin, I.M. Zaid, M.A. Lomholt, I.M. Sokolov, R. Metzler, Bulk-mediated surface diffusion along a cylinder: propagators and crossovers. Phys. Rev. E 79(4), 040105 (2009)

    ADS  Google Scholar 

  187. A.M. Berezhkovskii, L. Dagdug, S.M. Bezrukov, A new approach to the problem of bulk-mediated surface diffusion. J. Chem. Phys. 143(8), 084103 (2015)

    ADS  Google Scholar 

  188. A.V. Chechkin, I.M. Zaid, M.A. Lomholt, I.M. Sokolov, R. Metzler, Bulk-mediated diffusion on a planar surface: full solution. Phys. Rev. E 86(4), 041101 (2012)

    ADS  Google Scholar 

  189. M. Renner, L. Wang, S. Levi, L. Hennekinne, A. Triller, A simple and powerful analysis of lateral subdiffusion using single particle tracking. Biophys. J. 113(11), 2452–2463 (2017)

    ADS  Google Scholar 

  190. W. Wang, M. Wang, E. Ambrosi, A. Bricalli, M. Laudato, Z. Sun, X. Chen, D. Ielmini, Surface diffusion-limited lifetime of silver and copper nanofilaments in resistive switching devices. Nat. Commun. 10(1), 1–9 (2019)

    Google Scholar 

  191. J. Zimmerberg, M.M. Kozlov, How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7(1), 9–19 (2006)

    Google Scholar 

  192. A. Callan-Jones, P. Bassereau, Curvature-driven membrane lipid and protein distribution. Curr. Opin. Solid State Mater. Sci. 17(4), 143–150 (2013)

    ADS  Google Scholar 

  193. A. Mietke, F. Jülicher, I.F. Sbalzarini, Self-organized shape dynamics of active surfaces. Proc. Natl. Acad. Sci. 116(1), 29–34 (2019)

    ADS  Google Scholar 

  194. N. Gov, Guided by curvature: shaping cells by coupling curved membrane proteins and cytoskeletal forces. Philos. Trans. R. Soc. B Biol. Sci. 373(1747), 20170115 (2018)

    Google Scholar 

  195. T. Belay, C.I. Kim, P. Schiavone, Bud formation of lipid membranes in response to the surface diffusion of transmembrane proteins and line tension. Math. Mech. Solids 22(11), 2091–2107 (2017)

    MathSciNet  MATH  Google Scholar 

  196. A. Mahapatra, D. Saintillan, P. Rangamani, Transport phenomena in fluid films with curvature elasticity. J. Fluid Mech. 905 (2020)

  197. L. Iversen, S. Mathiasen, J.B. Larsen, D. Stamou, Membrane curvature bends the laws of physics and chemistry. Nat. Chem. Biol. 11(11), 822–825 (2015)

    Google Scholar 

  198. T. Baumgart, B.R. Capraro, C. Zhu, S.L. Das, Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62, 483–506 (2011)

    ADS  Google Scholar 

  199. T.R. Graham, M.M. Kozlov, Interplay of proteins and lipids in generating membrane curvature. Curr. Opin. Cell Biol. 22(4), 430–436 (2010)

    Google Scholar 

  200. S. Dharmavaram, S.B. She, G. Lázaro, M.F. Hagan, R. Bruinsma, Gaussian curvature and the budding kinetics of enveloped viruses. PLoS Comput. Biol. 15(8), 1006602 (2019)

    ADS  Google Scholar 

  201. C.M. Elliott, H. Fritz, G. Hobbs, Small deformations of Helfrich energy minimising surfaces with applications to biomembranes. Math. Models Methods Appl. Sci. 27(08), 1547–1586 (2017)

    MathSciNet  MATH  Google Scholar 

  202. M. Núñez-López, G. Chacón-Acosta, J. Santiago, Diffusion-driven instability on a curved surface: spherical case revisited. Braz. J. Phys. 47(2), 231–238 (2017)

  203. C. Varea, J. Aragon, R. Barrio, Turing patterns on a sphere. Phys. Rev. E 60(4), 4588 (1999)

    ADS  Google Scholar 

  204. D.A. León-Velasco, G. Chacón-Acosta, Full finite element scheme for reaction-diffusion systems on embedded curved surfaces. Adv. Math. Phys. 2021 (2021)

Download references

Acknowledgements

We thank the División de Ciencias Básicas e Ingeniería of UAM-Iztapalpa for financial support under the Programa Especial de Apoyo a Proyectos de Docencia e Investigación, 2023 and PRODEP program.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

A.L.D conceived of the presented idea. A.L.D and H.J.V performed the numerical computations. A.L.D verified the analytical methods. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to L. Héctor Juárez-Valencia.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledesma-Durán, A., Juárez-Valencia, L.H. Diffusion coefficients and MSD measurements on curved membranes and porous media. Eur. Phys. J. E 46, 70 (2023). https://doi.org/10.1140/epje/s10189-023-00329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00329-z

Navigation