Skip to main content
Log in

Charge fluctuations in charge-regulated systems: dependence on statistical ensemble

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate charge regulation of nanoparticles in concentrated suspensions, focusing on the effect of different statistical ensembles. We find that the choice of ensemble does not affect the mean charge of nanoparticles, but significantly alters the magnitude of its fluctuation. Specifically, we compared the behaviors of colloidal charge fluctuations in the semi-grand canonical and canonical ensembles and identified significant differences between the two. The choice of ensemble—whether the system is isolated or is in contact with a reservoir of acid and salt—will, therefore, affect the Kirkwood–Shumaker fluctuation-induced force inside concentrated suspensions. Our results emphasize the importance of selecting an appropriate ensemble that accurately reflects the experimental conditions when studying fluctuation-induced forces between polyelectrolytes, proteins, and colloidal particles in concentrated suspensions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during the reported research are presented in the article.

References

  1. Y.S. Jho, M. Kanduč, A. Naji, R. Podgornik, M.W. Kim, P.A. Pincus, Strong-coupling electrostatics in the presence of dielectric inhomogeneities. Phys. Rev. Lett. 101, 188101 (2008)

    ADS  Google Scholar 

  2. Y.W. Kim, J. Yi, P.A. Pincus, Attractions between like-charged surfaces with dumbbell-shaped counterions. Phys. Rev. Lett. 101, 208305 (2008). https://doi.org/10.1103/PhysRevLett.101.208305

    Article  ADS  Google Scholar 

  3. C. Schneider, A. Jusufi, R. Farina, F. Li, P. Pincus, M. Tirrell, M. Ballauff, Microsurface potential measurements: repulsive forces between polyelectrolyte brushes in the presence of multivalent counterions. Langmuir 24(19), 10612–10615 (2008)

    Google Scholar 

  4. M.N. Tamashiro, E. Hernández-Zapata, P.A. Schorr, M. Balastre, M. Tirrell, P. Pincus, Salt dependence of compression normal forces of quenched polyelectrolyte brushes. J. Chem. Phys. 115(4), 1960–1969 (2001)

    ADS  Google Scholar 

  5. P.A. Pincus, S.A. Safran, Charge fluctuations and membrane attractions. Europhys. Lett. 42(1), 103 (1998). https://doi.org/10.1209/epl/i1998-00559-8

    Article  ADS  Google Scholar 

  6. R. Tadmor, E. Hernández-Zapata, N. Chen, P. Pincus, J.N. Israelachvili, Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules 35(6), 2380–2388 (2002)

    ADS  Google Scholar 

  7. F.C. MacKintosh, S.A. Safran, P.A. Pincus, Self-assembly of linear aggregates: the effect of electrostatics on growth. Europhys. Lett. 12(8), 697 (1990). https://doi.org/10.1209/0295-5075/12/8/005

    Article  ADS  Google Scholar 

  8. W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Dna-inspired electrostatics. Phys. Today 53(9), 38–45 (2000)

    Google Scholar 

  9. D.M. Smith, K. Woerpel, Electrostatic interactions in cations and their importance in biology and chemistry. Org. Biomol. Chem. 4(7), 1195–1201 (2006)

    Google Scholar 

  10. B.H. Honig, W.L. Hubbell, R.F. Flewelling, Electrostatic interactions in membranes and proteins. Ann. Rev. Biophys. Biophys. Chem. 15(1), 163–193 (1986)

    Google Scholar 

  11. B. Venkataraman, Emphasizing the significance of electrostatic interactions in chemical bonding. J. Chem. Educ. 94(3), 296–303 (2017)

    Google Scholar 

  12. R. Brewster, P.A. Pincus, S.A. Safran, Self assembly modulated by interactions of two heterogeneously charged surfaces. Phys. Rev. Lett. 101, 128101 (2008)

    ADS  Google Scholar 

  13. A. Naydenov, P.A. Pincus, S.A. Safran, Equilibrium domains on heterogeneously charged surfaces. Langmuir 23(24), 12016–12023 (2007)

    Google Scholar 

  14. D. Andelman, Introduction to electrostatics in soft and biological matter. Soft Condens. Matter Phys. Mol. Cell Biol. 6, 97–122 (2006)

    Google Scholar 

  15. A. Bakhshandeh, Theoretical investigation of a polarizable colloid in the salt medium. Chem. Phys. 513, 195–200 (2018)

    Google Scholar 

  16. T.E. Colla, A. Bakhshandeh, Y. Levin, Osmotic stress and pore nucleation in charged biological nanoshells and capsids. Soft Matter 16, 2390–2405 (2020). https://doi.org/10.1039/C9SM02532D

    Article  ADS  Google Scholar 

  17. K.K. Ewert, P. Scodeller, L. Simón-Gracia, V.M. Steffes, E.A. Wonder, T. Teesalu, C.R. Safinya, Cationic liposomes as vectors for nucleic acid and hydrophobic drug therapeutics. Pharmaceutics (2021). https://doi.org/10.3390/pharmaceutics13091365

    Article  Google Scholar 

  18. A. Elouahabi, J.-M. Ruysschaert, Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 11(3), 336–347 (2005). https://doi.org/10.1016/j.ymthe.2004.12.006

    Article  Google Scholar 

  19. V. Vijayanathan, T. Thomas, T.J. Thomas, Dna nanoparticles and development of dna delivery vehicles for gene therapy. Biochemistry 41(48), 14085–14094 (2002). https://doi.org/10.1021/bi0203987

    Article  Google Scholar 

  20. H. Muhren, P. van der Schoot, Electrostatic theory of the acidity of the solution in the lumina of viruses and virus-like particles. J. Phys. Chem. B 127(10), 2160–2168 (2023)

    Google Scholar 

  21. L. Zhong, S. Fu, X. Peng, H. Zhan, R. Sun, Colloidal stability of negatively charged cellulose nanocrystalline in aqueous systems. Carbohydr. Polym. 90(1), 644–649 (2012)

    Google Scholar 

  22. L. Margulis, D. Sagan, What Is Life? (Univ of California Press, 2000)

  23. P. Ball, In: Smith, I.W.M., Cockell, C.S., Leach, S. (eds.) The Importance of Water, (Springer, Berlin, Heidelberg, 2013), pp. 169–210

  24. J. Israelachvili, Intermolecular and Surface Forces (Academic. Elsevier, New York, 1992)

    Google Scholar 

  25. C. Malmberg, A. Maryott, Dielectric constant of water from 0 to 100 c. J. Res. Natl. Bur. Stand. 56(1), 1–8 (1956)

    Google Scholar 

  26. B.B. Owen, R.C. Miller, C.E. Milner, H.L. Cogan, The dielectric constant of water as a function of temperature and pressure1, 2. J. Phys. Chem. 65(11), 2065–2070 (1961)

    Google Scholar 

  27. C.H. Collie, J.B. Hasted, D.M. Ritson, The dielectric properties of water and heavy water. Proc. Phys. Soc. 60(2), 145 (1948). https://doi.org/10.1088/0959-5309/60/2/304

    Article  ADS  Google Scholar 

  28. D. Eisenberg, W. Kauzmann, The Structure and Properties of Water (Oxford University Press, 2005)

  29. M. Binazadeh, M. Xu, A. Zolfaghari, H. Dehghanpour, Effect of electrostatic interactions on water uptake of gas shales: the interplay of solution ionic strength and electrostatic double layer. Energy Fuels 30(2), 992–1001 (2016)

    Google Scholar 

  30. S.B. Howerton, A. Nagpal, L. Dean Williams, Surprising roles of electrostatic interactions in dna-ligand complexes. Biopolymers 69(1), 87–99 (2003)

    Google Scholar 

  31. W. Cheng, E. Wang, Size-dependent phase transfer of gold nanoparticles from water into toluene by tetraoctylammonium cations: a wholly electrostatic interaction. J. Phys. Chem. B 108(1), 24–26 (2004)

    Google Scholar 

  32. R.L. Davidchack, R. Handel, J. Anwar, A.V. Brukhno, Ice ih-water interfacial free energy of simple water models with full electrostatic interactions. J. Chem. Theory Comput. 8(7), 2383–2390 (2012)

    Google Scholar 

  33. M. Luo, G.K. Olivier, J. Frechette, Electrostatic interactions to modulate the reflective assembly of nanoparticles at the oil-water interface. Soft Matter 8(47), 11923–11932 (2012)

    ADS  Google Scholar 

  34. K. Sidhu, J. Goodfellow, J. Turner, Effect of molecular shape and electrostatic interactions on the water layer around polar and apolar groups in solution. J. Chem. Phys. 110(16), 7943–7950 (1999)

    ADS  Google Scholar 

  35. A.J. Hurd, The electrostatic interaction between interfacial colloidal particles. J. Phys. A Math. Gen. 18(16), 1055 (1985)

    ADS  Google Scholar 

  36. F. Booth, The dielectric constant of water and the saturation effect. J. Chem. Phys. 19(4), 391–394 (1951)

    ADS  MathSciNet  Google Scholar 

  37. B.W. Ninham, V.A. Parsegian, Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. J. Theor. Biol. 31(3), 405–428 (1971)

    ADS  Google Scholar 

  38. D. Frydel, General theory of charge regulation within the poisson-boltzmann framework: study of a sticky-charged wall model. J. Chem. Phys. 150(19), 194901 (2019)

    ADS  Google Scholar 

  39. A. Bakhshandeh, D. Frydel, A. Diehl, Y. Levin, Charge regulation of colloidal particles: theory and simulations. Phys. Rev. Lett. 123(20), 208004 (2019)

    ADS  Google Scholar 

  40. A. Bakhshandeh, D. Frydel, Y. Levin, Theory of charge regulation of colloidal particles in electrolyte solutions. Langmuir 38(45), 13963–13971 (2022)

    Google Scholar 

  41. A. Bakhshandeh, D. Frydel, Y. Levin, Reactive monte carlo simulations for charge regulation of colloidal particles. J. Chem. Phys. 156(1), 014108 (2022)

    ADS  Google Scholar 

  42. A. Bakhshandeh, M. Segala, T.E. Colla, Equilibrium conformations and surface charge regulation of spherical polymer brushes in stretched regimes. Macromolecules 55(1), 35–48 (2021)

    ADS  Google Scholar 

  43. A. Bakhshandeh, D. Frydel, Y. Levin, Charge regulation of colloidal particles in aqueous solutions. Phys. Chem. Chem. Phys. 22(42), 24712–24728 (2020)

    Google Scholar 

  44. Y. Avni, T. Markovich, R. Podgornik, D. Andelman, Charge regulating macro-ions in salt solutions: screening properties and electrostatic interactions. Soft Matter 14(29), 6058–6069 (2018)

    ADS  Google Scholar 

  45. M. Tagliazucchi, M.O. De La Cruz, I. Szleifer, Self-organization of grafted polyelectrolyte layers via the coupling of chemical equilibrium and physical interactions. Proc. Natl. Acad. Sci. 107(12), 5300–5305 (2010)

    ADS  Google Scholar 

  46. M. Lund, B. Jönsson, Charge regulation in biomolecular solution. Q. Rev. Biophys. 46(3), 265–281 (2013)

    Google Scholar 

  47. G.S. Longo, M.O. Cruz, I. Szleifer, Molecular theory of weak polyelectrolyte gels: the role of ph and salt concentration. Macromolecules 44(1), 147–158 (2011)

    ADS  Google Scholar 

  48. M. Heinen, T. Palberg, H. Löwen, Coupling between bulk-and surface chemistry in suspensions of charged colloids. J. Chem. Phys. 140(12), 124904 (2014)

    ADS  Google Scholar 

  49. M. Lund, B. Jönsson, On the charge regulation of proteins. Biochemistry 44(15), 5722–5727 (2005)

    Google Scholar 

  50. N. Boon, R. van Roij, Charge regulation and ionic screening of patchy surfaces. J. Chem. Phys. 134(5), 054706 (2011)

    ADS  Google Scholar 

  51. J.G. Kirkwood, J.B. Shumaker, Forces between protein molecules in solution arising from fluctuations in proton charge and configuration. Proc. Natl. Acad. Sci. 38(10), 863–871 (1952)

    ADS  Google Scholar 

  52. J.G. Kirkwood, J.B. Shumaker, The influence of dipole moment fluctuations on the dielectric increment of proteins in solution. Proc. Natl. Acad. Sci. 38(10), 855–862 (1952)

    ADS  Google Scholar 

  53. S.N. Timasheff, H.M. Dintzis, J.G. Kirkwood, B.D. Coleman, Studies of molecular interaction in isoionic protein solutions by light-scattering. Proc. Natl. Acad. Sci. 41(10), 710–714 (1955)

    ADS  Google Scholar 

  54. N. Adžić, R. Podgornik, Charge regulation in ionic solutions: thermal fluctuations and kirkwood-schumaker interactions. Phys. Rev. E 91(2), 022715 (2015)

    ADS  Google Scholar 

  55. A. Bozic, R. Podgornik, Site correlations, capacitance, and polarizability from protein protonation fluctuations. J. Phys. Chem. B 125(46), 12902–12908 (2021)

    Google Scholar 

  56. Y. Avni, D. Andelman, R. Podgornik, Charge regulation with fixed and mobile charged macromolecules. Curr. Opin. Electrochem. 13, 70–77 (2019)

    Google Scholar 

  57. Y. Levin, Electrostatic correlations: from plasma to biology. Rep. Prog. Phys. 65(11), 1577 (2002)

    ADS  Google Scholar 

  58. C. Labbez, B. Jönsson, A new monte carlo method for the titration of molecules and minerals. In: Applied Parallel Computing. State of the Art in Scientific Computing: 8th International Workshop, PARA 2006, Umeå, Sweden, June 18-21, 2006, Revised Selected Papers 8, (Springer, 2007), pp. 66–72

  59. T. Curk, E. Luijten, Charge regulation effects in nanoparticle self-assembly. Phys. Rev. Lett. 126(13), 138003 (2021)

    ADS  Google Scholar 

  60. J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm, P. Košovan, Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter 15, 1155–1185 (2019)

    ADS  Google Scholar 

  61. Y. Levin, A. Bakhshandeh, Comment on ’Simulations of ionization equilibria in weak polyelectrolyte solutions and gels’ by J. Landsgesell, L. Nová, O. Rud, F. Uhlík, D. Sean, P. Hebbeker, C. Holm and P. Košovan. Soft matter, 2019, 15, 1155-1185. Soft Matter (2023). https://doi.org/10.1039/D2SM01393B

  62. Y. Levin, A. Bakhshandeh, A new method for reactive constant ph simulations. arXiv preprint arXiv:2305.10521 (2023)

  63. J.K. Johnson, A.Z. Panagiotopoulos, K.E. Gubbins, Reactive canonical monte carlo: a new simulation technique for reacting or associating fluids. Mol. Phys. 81(3), 717–733 (1994)

    ADS  Google Scholar 

  64. N.F. Carnahan, K.E. Starling, Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51(2), 635–636 (1969)

    ADS  Google Scholar 

  65. N.F. Carnahan, K.E. Starling, Thermodynamic properties of a rigid-sphere fluid. J. Chem. Phys. 53(2), 600–603 (1970)

  66. D. Adams, Chemical potential of hard-sphere fluids by monte carlo methods. Mol. Phys. 28(5), 1241–1252 (1974)

    ADS  Google Scholar 

  67. J.C. Maciel, C.R. Abreu, F.W. Tavares, Chemical potentials of hard-core molecules by a stepwise insertion method. Braz. J. Chem. Eng. 35, 277–288 (2018)

    Google Scholar 

  68. J.S. Høye, E. Lomba, Mean spherical approximation (msa) for a simple model of electrolytes. i. theoretical foundations and thermodynamics. J. Chem. Phys. 88(9), 5790–5797 (1988)

    ADS  Google Scholar 

  69. C.-H. Ho, H.-K. Tsao, Y.-J. Sheng, Interfacial tension of a salty droplet: Monte carlo study. J. Chem. Phys. 119(4), 2369–2375 (2003)

    ADS  Google Scholar 

  70. Y. Levin, M.E. Fisher, Criticality in the hard-sphere ionic fluid. Phys. A Stat. Mech. Appl. 225(2), 164–220 (1996)

    Google Scholar 

  71. E. Waisman, J.L. Lebowitz, Mean spherical model integral equation for charged hard spheres i. method of solution. J. Chem. Phys. 56(6), 3086–3093 (1972)

    ADS  Google Scholar 

  72. L. Blum, Mean spherical model for asymmetric electrolytes: I. method of solution. Mol. Phys. 30(5), 1529–1535 (1975)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the CNPq, the CAPES, and the National Institute of Science and Technology Complex Fluids INCT-FCx.

Author information

Authors and Affiliations

Authors

Contributions

YL developed theory. AB performed simulations. Both authors wrote the paper.

Corresponding author

Correspondence to Yan Levin.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshandeh, A., Levin, Y. Charge fluctuations in charge-regulated systems: dependence on statistical ensemble. Eur. Phys. J. E 46, 65 (2023). https://doi.org/10.1140/epje/s10189-023-00325-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00325-3

Navigation