Skip to main content
Log in

Energy computation and multiplier-less implementation of the two-dimensional FitzHugh–Nagumo (FHN) neural circuit

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

In this work, with the aim of reducing the cost of the implementation of the traditional 2D FHN neuron circuit, a pair of diodes connected in an anti-parallel direction is used to replace the usual cubic nonlinearity (implemented with two multipliers). Based on the stability of the model, the generation of self-excited firing patterns is justified. Making use of the famous Helmholtz theorem, a Hamilton function is provided for the estimation of the energy released during each electrical activity of the model. From the investigation of the 1D evolution of the maxima of the membrane potential of the model, it was recorded that the considered model is able to experience a period of doubling bifurcation followed by a crisis that enables the increasing of the volume of the attractor. This contribution ends with the realization of a neural circuit without analog multipliers for the validation of the obtained results.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. S. Aghababaei, S. Balaraman, K. Rajagopal, F. Parastesh, S. Panahi, S. Jafari, Effects of autapse on the chimera state in a Hindmarsh–Rose neuronal network. Chaos, Solitons Fractals 153, 111498 (2021)

    Article  MathSciNet  Google Scholar 

  2. A. Andreev, N. Frolov, A. Pisarchik, A. Hramov, Chimera state in complex networks of bistable hodgkin-huxley neurons. Phys. Rev. E 100, 022224 (2019)

    Article  ADS  Google Scholar 

  3. B. Bao, A. Hu, Q. Xu, H. Bao, H. Wu, M. Chen, AC-induced coexisting asymmetric bursters in the improved Hindmarsh–Rose model. Nonlinear Dyn. 92, 1695–1706 (2018)

    Article  Google Scholar 

  4. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952)

    Article  Google Scholar 

  5. A.L. Hodgkin, A.F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449 (1952)

    Article  Google Scholar 

  6. F. Goetze, P.-Y. Lai, Dynamics of synaptically coupled FitzHugh–Nagumo neurons. Chinese J. Phys. 77, 1365 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. MingLin, X. XiaoHua, Y. Yang, L. ZhiJun, S. YiChuang, Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor. Chin. Phys. B.( 2023).

  8. S.S. Muni, K. Rajagopal, A. Karthikeyan, S. Arun, Discrete hybrid Izhikevich neuron model: Nodal and network behaviours considering electromagnetic flux coupling. Chaos, Solitons Fractals 155, 111759 (2022)

    Article  Google Scholar 

  9. M.S. Kafraj, F. Parastesh, S. Jafari, Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos, Solitons Fractals 137, 109782 (2020)

    Article  MathSciNet  Google Scholar 

  10. K. Li, H. Bao, H. Li, J. Ma, Z. Hua, B.-C. Bao, Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Inf. 18, 1726 (2021)

    Article  Google Scholar 

  11. H.R. Wilson, Simplified dynamics of human and mammalian neocortical neurons. J. Theor. Biol. 200, 375–388 (1999)

    Article  ADS  Google Scholar 

  12. V. Belykh, E. Pankratova, Chaotic synchronization in ensembles of coupled neurons modeled by the FitzHugh–Rinzel system. Radiophys. Quantum Electron. 49, 910–921 (2006)

    Article  ADS  Google Scholar 

  13. I. Hussain, D. Ghosh, S. Jafari, Chimera states in a thermosensitive FitzHugh–Nagumo neuronal network. Appl. Math. Comput. 410, 126461 (2021)

    MathSciNet  MATH  Google Scholar 

  14. G. Zhang, D. Guo, F. Wu, J. Ma, Memristive autapse involving magnetic coupling and excitatory autapse enhance firing. Neurocomputing 379, 296–304 (2020)

    Article  Google Scholar 

  15. N. Zandi-Mehran, S. Jafari, S.M.R. Hashemi Golpayegani, F. Nazarimehr, M. Perc, Different synaptic connections evoke different firing patterns in neurons subject to an electromagnetic field. Nonlinear Dyn. 100, 1809–1824 (2020)

    Article  Google Scholar 

  16. Y. Liu, F. Nazarimehr, A.J.M. Khalaf, A. Alsaedi, T. Hayat, Detecting bifurcation points in a memristive neuron model. Eur. Phys. J. Spec. Top. 228, 1943–1950 (2019)

    Article  Google Scholar 

  17. Q. Lai, C. Lai, H. Zhang, C. Li, Hidden coexisting hyperchaos of new memristive neuron model and its application in image encryption. Chaos, Solitons Fractals 158, 112017 (2022)

    Article  MathSciNet  Google Scholar 

  18. Y. Yao, C. Yao, Autapse-induced logical resonance in the FitzHugh–Nagumo neuron. Nonlinear Dyn. 111, 4807–4821 (2023)

    Article  Google Scholar 

  19. Z.T. Njitacke, J. Ramadoss, C.N. Takembo, K. Rajagopal, J. Awrejcewicz, An enhanced FitzHugh–Nagumo neuron circuit, microcontroller-based hardware implementation: light illumination and magnetic field effects on information patterns. Chaos, Solitons Fractals 167, 113014 (2023)

    Article  Google Scholar 

  20. Y. Lin, W. Liu, C. Hang, Revelation and experimental verification of quasi-periodic bursting, periodic bursting, periodic oscillation in third-order non-autonomous memristive FitzHugh–Nagumo neuron circuit. Chaos, Solitons Fractals 167, 113006 (2023)

    Article  MathSciNet  Google Scholar 

  21. V.V. Semenov, A.V. Bukh, N. Semenova, Delay-induced self-oscillation excitation in the FitzHugh-Nagumo model: regular and chaotic dynamics. arXiv preprint arXiv:230212159. (2023).

  22. F. Goetze, P.-Y. Lai, Dynamics of synaptically coupled FitzHugh–Nagumo neurons. Chin. J. Phys. 77, 1365–1380 (2022)

    Article  MathSciNet  Google Scholar 

  23. S. Kumarasamy, A. Srinivasan, M. Ramasamy, K. Rajagopal, Strange nonchaotic dynamics in a discrete FitzHugh–Nagumo neuron model with sigmoidal recovery variable. Chaos: Interdiscip. J. Nonlinear Sci. 32, 073106 (2022)

    Article  MathSciNet  Google Scholar 

  24. I.K. Ngongiah, B. Ramakrishnan, G.F. Kuiate, R. Tagne, S.T. Kingni, Actuating mechanical arms coupled to an array of FitzHugh–Nagumo neuron circuits. Eur. Phys. J. Spec. Top. 232, 1–15 (2022)

    Google Scholar 

  25. X.-L. Song, W.-Y. Jin, J. Ma, Energy dependence on the electric activities of a neuron. Chin. Phys. B 24, 128710 (2015)

    Article  ADS  Google Scholar 

  26. F. Wu, J. Ma, G. Zhang, Energy estimation and coupling synchronization between biophysical neurons. Sci. China Technol. Sci. 63, 625–636 (2020)

    Article  ADS  Google Scholar 

  27. Y. Zhang, W. ChunNi, T. Jun, M. Jun, R. GuoDong, Phase coupling synchronization of FHN neurons connected by a Josephson junction. Sci. China Technol. Sci. 63, 2328–2338 (2020)

    Article  ADS  Google Scholar 

  28. Q. Xu, X. Chen, B. Chen, H. Wu, Z. Li, H. Bao, Dynamical analysis of an improved FitzHugh-Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 11, 1–13 (2023)

    Google Scholar 

  29. E.M. Izhikevich, R. FitzHugh, Fitzhugh-nagumo model. Scholarpedia 1, 1349 (2006)

    Article  ADS  Google Scholar 

  30. Li M, Andersen DG, Park JW, Smola AJ, Ahmed A, Josifovski V, et al. Scaling distributed machine learning with the parameter server. 11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14) (2014). p. 583–98.

  31. R. Akerkar, Artificial intelligence for business (Springer, 2019)

    Book  Google Scholar 

  32. S. Ullah, T.D.A. Nguyen, A. Kumar, Energy-efficient low-latency signed multiplier for FPGA-based hardware accelerators. IEEE Embed. Syst. Lett. 13, 41–44 (2020)

    Article  Google Scholar 

  33. A.J. Leigh, M. Mirhassani, R. Muscedere, An efficient spiking neuron hardware system based on the hardware-oriented modified Izhikevich neuron (HOMIN) model. IEEE Trans. Circuits Syst. II Express Briefs 67, 3377–3381 (2020)

    Google Scholar 

  34. P. Huang, Y. Guo, G. Ren, J. Ma, Energy-induced resonance synchronization in neural circuits. Mod. Phys. Lett. B 35, 2150433 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  35. L. Lu, M. Yi, X. Liu, Energy-efficient firing modes of chay neuron model in different bursting kinetics. Sci. China Technol. Sci. 65, 1661–1674 (2022)

    Article  Google Scholar 

  36. Y. Xie, Z. Yao, G. Ren, J. Ma, Estimate physical reliability in Hindmarsh-Rose neuron. Phys. Lett. A 464, 128693 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  37. J. Han, Z. Li, W. Zheng, Y. Zhang, Hardware implementation of spiking neural networks on FPGA. Tsinghua Sci. Technol. 25, 479–486 (2020)

    Article  Google Scholar 

  38. S. Yaghini Bonabi, H. Asgharian, S. Safari, A.M. Nili, FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model. Front. Neurosci. 8, 379 (2014)

    Article  Google Scholar 

  39. H. Bao, A. Hu, W. Liu, B. Bao, Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31, 502–511 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the Center for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2023/RP/010. Jan Awrejcewicz has been supported by the Polish National Science Centre under the Grant OPUS 18No.2019/ 35/B/ST8/00980.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally to this manuscript.

Corresponding author

Correspondence to Zeric Tabekoueng Njitacke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabekoueng Njitacke, Z., Sriram, G., Rajagopal, K. et al. Energy computation and multiplier-less implementation of the two-dimensional FitzHugh–Nagumo (FHN) neural circuit. Eur. Phys. J. E 46, 60 (2023). https://doi.org/10.1140/epje/s10189-023-00319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00319-1

Navigation