Skip to main content
Log in

Autapse-induced logical resonance in the FitzHugh–Nagumo neuron

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

It was demonstrated that the chaos-driven FitzHugh–Nagumo (FHN) neuron can be considered as a logic system to implement the reliable logical operations through the mechanism of logical resonance. Autapse (meaning the self-synapse) widely exists in various kinds of neurons, and it significantly affects the neuronal dynamics and functionalities. However, the effects of autapse on logical resonance have not been reported yet. Here, we explore the effects of autapse on the reliability of AND & NAND logical operations based on the autaptic FHN neuron model with time-varying coupling intensity. The numerical results demonstrate that there are the optimal ranges of parameters (including autaptic time delay, amplitude, frequency and phase fluctuation of autaptic coupling intensity) at which the reliability of logical operations can be maximized. Namely, autapse-induced logical resonance can be realized in the autaptic FHN neuron model. More interestingly, multiple logical resonances can be obtained by regulating autaptic time delay, phase fluctuation of autaptic coupling intensity, as well as frequency ratio between and autaptic coupling intensity and external periodic driving force. Finally, an intuitive interpretation for autapse-induced logical resonance is given based on the motion of the particle in the potential landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vanderlo, H., Glaser, E.M.: Autapses in neocortex cerebri: synapses between a pyramidal cells axon and its own dendrites. Brain Res. 48, 355–360 (1972)

    Google Scholar 

  2. Karabelas, A.B., Purpura, D.P.: Evidence for autapses in the substantia nigra. Brain Res. 200(2), 467–473 (1980)

    Google Scholar 

  3. Tamas, G., Buhl, E.H., Somogyi, P.: Massive autaptic self-innervation of GABAergic neurons in cat visual cortex. J. Neurosci. 17(16), 6352–6364 (1997)

    Google Scholar 

  4. Bekkers, J.M.: Synaptic transmission: functional autapses in the cortex. Curr. Biol. 13(11), R433–R435 (2003)

    Google Scholar 

  5. Guo, S., Tang, J., Ma, J., Wang, C.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity 2017, 4631602 (2017)

    Google Scholar 

  6. Xu, Y., Ying, H., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Google Scholar 

  7. Ren, G., Zhou, P., Ma, J., Cai, N., Alsaedi, A., Ahmad, B.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurc. Chaos 27(12), 1750187 (2017)

    Google Scholar 

  8. Song, X., Wang, H., Chen, Y.: Autapse-induced firing patterns transitions in the Morris-Lecar neuron model. Nonlinear Dyn. 96(4), 2341–2350 (2019)

    Google Scholar 

  9. Qu, L., Du, L., Cao, Z., Hu, H., Deng, Z.: Pattern transition of neuronal networks induced by chemical autapses with random distribution. Chaos Solitons Fractals 144, 110646 (2021)

    Google Scholar 

  10. Qin, H., Ma, J., Wang, C., Chu, R.: Autapse-induced target wave, spiral wave in regular network of neurons. Sci. China Phys. Mech. Astron. 57(10), 1918–1926 (2014)

    Google Scholar 

  11. Ma, J., Song, X., Jin, W., Wang, C.: Autapse-induced synchronization in a coupled neuronal network. Chaos Solitons Fractals 80, 31–38 (2015)

    MATH  Google Scholar 

  12. Ma, J., Song, X., Tang, J., Wang, C.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Google Scholar 

  13. Ge, M.Y., Jia, Y., Xu, Y., Lu, L.L., Wang, H.W., Zhao, Y.J.: Wave propagation and synchronization induced by chemical autapse in chain Hindmarsh-Rose neural network. Appl. Math. Comput. 352, 136–145 (2019)

    MATH  Google Scholar 

  14. Peng, L., Tang, J., Ma, J., Luo, J.: The influence of autapse on synchronous firing in small-world neural networks. Physica A 594, 126956 (2022)

    MATH  Google Scholar 

  15. Wang, G., Wu, Y., Xiao, F., Ye, Z., Jia, Y.: Non-Gaussian noise and autapse-induced inverse stochastic resonance in bistable Izhikevich neural system under electromagnetic induction. Physica A 598, 127274 (2022)

    MATH  Google Scholar 

  16. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Google Scholar 

  17. Aghababaei, S., Balaraman, S., Rajagopal, K., Parastesh, F., Panahi, S., Jafari, S.: Effects of autapse on the chimera state in a Hindmarsh-Rose neuronal network. Chaos Solitons Fractals 153, 111498 (2021)

    Google Scholar 

  18. Wang, H., Sun, Y., Li, Y., Chen, Y.: Influence of autapse on mode-locking structure of a Hodgkin-Huxley neuron under sinusoidal stimulus. J. Theor. Biol. 358, 25–30 (2014)

    MATH  Google Scholar 

  19. Yang, X., Yu, Y., Sun, Z.: Autapse-induced multiple stochastic resonances in a modular neuronal network. Chaos 27(8), 083117 (2017)

    Google Scholar 

  20. Zhang, N., Li, D., Xing, Y.: Autapse-induced multiple inverse stochastic resonance in a neural system. Eur. Phys. J. B 94(1), 1 (2021)

    Google Scholar 

  21. Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78(5), 775–778 (1997)

    MATH  Google Scholar 

  22. Yilmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)

    Google Scholar 

  23. Baysal, V., Erkan, E., Yilmaz, E.: Impacts of autapse on chaotic resonance in single neurons and small-world neuronal networks. Philos. Trans. A Math. Phys. Eng. Sci. 379(2198), 20200237 (2021)

    Google Scholar 

  24. Yao, Y., Ma, J.: Signal transmission by autapse with constant or time-periodic coupling intensity in the FitzHugh-Nagumo neuron. Eur. Phys. J. Spec. Top. 227(7–9), 757–766 (2018)

    Google Scholar 

  25. Yilmaz, E., Baysal, V., Perc, M., Ozer, M.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59(3), 364–370 (2016)

    Google Scholar 

  26. Murali, K., Sinha, S., Ditto, W.L., Bulsara, A.R.: Reliable logic circuit elements that exploit nonlinearity in the presence of a noise floor. Phys. Rev. Lett. 102(10), 104101 (2009)

    Google Scholar 

  27. Yang, H., Yao, Y., Ren, J.: Effect of phase disturbance on logical vibrational resonance. Chin. J. Phys. 77, 124–133 (2022)

    Google Scholar 

  28. Sinha, S., Cruz, J.M., Buhse, T., Parmananda, P.: Exploiting the effect of noise on a chemical system to obtain logic gates. EPL 86(6), 60003 (2009)

    Google Scholar 

  29. Murali, K., Rajamohamed, I., Sinha, S., Ditto, W.L., Bulsara, A.R.: Realization of reliable and flexible logic gates using noisy nonlinear circuits. Appl. Phys. Lett. 95(19), 194102 (2009)

    Google Scholar 

  30. Bulsara, A.R., Dari, A., Ditto, W.L., Murali, K., Sinha, S.: Logical stochastic resonance. Chem. Phys. 375(2–3), 424–434 (2010)

    Google Scholar 

  31. Fierens, P.I., Ibanez, S.A., Perazzo, R.P.J., Patterson, G.A., Grosz, D.F.: A memory device sustained by noise. Phys. Lett. A 374(22), 2207–2209 (2010)

    MATH  Google Scholar 

  32. Dari, A., Kia, B., Wang, X., Bulsara, A.R., Ditto, W.: Noise-aided computation within a synthetic gene network through morphable and robust logic gates. Phys. Rev. E 83(4), 041909 (2011)

    Google Scholar 

  33. Guerra, D.N., Bulsara, A.R., Ditto, W.L., Sinha, S., Murali, K., Mohanty, P.: A noise-assisted reprogrammable nanomechanical logic gate. Nano Lett. 10(4), 1168–1171 (2010)

    Google Scholar 

  34. Singh, K.P., Sinha, S.: Enhancement of “logical” responses by noise in a bistable optical system. Phys. Rev. E 83(4), 046219 (2011)

    Google Scholar 

  35. Zhang, L., Song, A., He, J.: Effect of colored noise on logical stochastic resonance in bistable dynamics. Phys. Rev. E 82(5), 051106 (2010)

    Google Scholar 

  36. Zhang, L., Song, A.G., He, J.: Logic signals driven stochastic resonance in bistable dynamics subjected to 1/f noise floor. Eur. Phys. J. B 80(2), 147–153 (2011)

    Google Scholar 

  37. Zhang, H., Xu, Y., Xu, W., Li, X.: Logical stochastic resonance in triple-well potential systems driven by colored noise. Chaos 22(4), 043130 (2012)

    Google Scholar 

  38. Zhang, H., Yang, T., Xu, W., Xu, Y.: Effects of non-Gaussian noise on logical stochastic resonance in a triple-well potential system. Nonlinear Dyn. 76(1), 649–656 (2014)

    MATH  Google Scholar 

  39. Zhang, L., Song, A.: Realizing reliable logical stochastic resonance under colored noise by adding periodic force. Physica A 503, 958–968 (2018)

    MATH  Google Scholar 

  40. Cheng, G., Liu, W., Gui, R., Yao, Y.: Sine-Wiener bounded noise-induced logical stochastic resonance in a two-well potential system. Chaos Solitons Fractals 131, 109514 (2020)

    MATH  Google Scholar 

  41. Das, M., Ray, D.S.: Control of logic gates by dichotomous noise in energetic and entropic systems. Phys. Rev. E 88 (3) (2013).

  42. Hellen, E.H., Dana, S.K., Kurths, J., Kehler, E., Sinha, S.: Noise-aided logic in an electronic analog of synthetic genetic networks. PLoS ONE 8(10), e76032 (2013)

    Google Scholar 

  43. Wang, N., Song, A.: Set-Reset latch logical operation induced by colored noise. Phys. Lett. A 378(22–23), 1588–1592 (2014)

    MATH  Google Scholar 

  44. Wang, N., Song, A.: Logical stochastic resonance in bistable system under alpha-stable noise. Eur. Phys. J. B 87(5), 117 (2014)

    Google Scholar 

  45. Zhang, L., Zheng, W., Xie, F., Song, A.: Effect of the correlation between internal noise and external noise on logical stochastic resonance in bistable systems. Phys. Rev. E 96(5), 052203 (2017)

    Google Scholar 

  46. Yao, Y.: Cross-correlated sine-Wiener bounded noises-induced logical stochastic resonance. Pramana J. Phys. 95(2), 77 (2021)

    Google Scholar 

  47. Hou, M., Yang, J., Shi, S., Liu, H.: Logical stochastic resonance in a nonlinear fractional-order system. Eur. Phys. J. Plus 135(9), 747 (2020)

    Google Scholar 

  48. Gupta, A., Sohane, A., Kohar, V., Murali, K., Sinha, S.: Noise-free logical stochastic resonance. Phys. Rev. E 84(5), 055201 (2011)

    Google Scholar 

  49. Kohar, V., Murali, K., Sinha, S.: Enhanced logical stochastic resonance under periodic forcing. Commun. Nonlinear Sci. Numer. Simulat. 19(8), 2866–2873 (2014)

    MATH  Google Scholar 

  50. Yang, B., Zhang, X., Luo, M.-K.: When noise-free logical stochastic resonance occurs in a bistable system. Nonlinear Dyn. 87(3), 1957–1965 (2017)

    Google Scholar 

  51. Gui, R., Yang, Y., Yao, Y., Cheng, G.: Noise-free logic and Set-Reset latch operation in a triple-well potential system. Chin. J. Phys. 68, 178–190 (2020)

    Google Scholar 

  52. Yao, Y., Cheng, G., Gui, R.: Periodic and aperiodic force-induced logical stochastic resonance in a bistable system. Chaos 30(7), 073125 (2020)

    MATH  Google Scholar 

  53. Yao, Y., Ma, J.: Logical chaotic resonance in a bistable system. Int. J. Bifurc. Chaos 30(13), 2050196 (2020)

    MATH  Google Scholar 

  54. Yao, Y., Ma, J., Gui, R., Cheng, G.: Chaos-induced Set-Reset latch operation. Chaos Solitons Fractals 152, 111339 (2021)

    Google Scholar 

  55. Yao, Y., Ma, J., Gui, R., Cheng, G.: Enhanced logical chaotic resonance. Chaos 31(2), 023103 (2021)

    MATH  Google Scholar 

  56. Yao, Y.: Logical chaotic resonance in the FitzHugh-Nagumo neuron. Nonlinear Dyn. 107(4), 3887–3901 (2022)

    Google Scholar 

  57. Cheng, G., Gui, R.: Bistable chaotic family and its chaotic mechanism. Chaos Solitons Fractals 162, 112407 (2022)

    Google Scholar 

  58. Wang, N., Song, A., Yang, B.: The effect of time-delayed feedback on logical stochastic resonance. Eur. Phys. J. B 90(6), 117 (2017)

    Google Scholar 

  59. Zhang, L., Zheng, W., Song, A.: Adaptive logical stochastic resonance in time-delayed synthetic genetic networks. Chaos 28(4), 043117 (2018)

    Google Scholar 

  60. Cheng, G., Zheng, S., Dong, J., Xu, Z., Gui, R.: Effect of time delay in a bistable synthetic gene network. Chaos 31(5), 053105 (2021)

    Google Scholar 

  61. Gui, R., Li, J., Yao, Y., Cheng, G.: Effect of time-delayed feedback in a bistable system inferred by logic operation. Chaos Solitons Fractals 148, 111043 (2021)

    Google Scholar 

  62. Wang, N., Song, A.: Parameter-induced logical stochastic resonance. Neurocomputing 155, 80–83 (2015)

    Google Scholar 

  63. Yao, Y.: Time-varying coupling-induced logical stochastic resonance in a periodically driven coupled bistable system. Chin. Phys. B 30(6), 060503 (2021)

    Google Scholar 

  64. Aravind, M., Murali, K., Sinha, S.: Coupling induced logical stochastic resonance. Phys. Lett. A 382(24), 1581–1585 (2018)

    Google Scholar 

  65. Murali, K., Rajasekar, S., Aravind, M.V., Kohar, V., Ditto, W.L., Sinha, S.: Construction of logic gates exploiting resonance phenomena in nonlinear systems. Philos. Trans. A Math. Phys. Eng. Sci. 379(2192), 20200238 (2021)

    Google Scholar 

  66. Li, Y., Schmid, G., Haenggi, P., Schimansky-Geier, L.: Spontaneous spiking in an autaptic Hodgkin-Huxley setup. Phys. Rev. E 82(6), 061907 (2010)

    Google Scholar 

  67. Yilmaz, E., Baysal, V., Ozer, M.: Enhancement of temporal coherence via time-periodic coupling strength in a scale-free network of stochastic Hodgkin-Huxley neurons. Phys. Lett. A 379(26–27), 1594–1599 (2015)

    Google Scholar 

  68. Guo, W., Du, L.-C., Mei, D.-C.: Transitions induced by time delays and cross-correlated sine-Wiener noises in a tumor-immune system interplay. Physica A 391(4), 1270–1280 (2012)

    Google Scholar 

  69. Wang, C.-J., Lin, Q.-F., Yao, Y.-G., Yang, K.-L., Tian, M.-Y., Wang, Y.: Dynamics of a stochastic system driven by cross-correlated sine-Wiener bounded noises. Nonlinear Dyn. 95(3), 1941–1956 (2019)

    MATH  Google Scholar 

  70. Deng, B., Wang, J., Wei, X., Yu, H., Li, H.: Theoretical analysis of vibrational resonance in a neuron model near a bifurcation point. Phys. Rev. E 89(6), 062916 (2014)

    Google Scholar 

  71. DeVille, R.E.L., Vanden-Eijnden, E., Muratov, C.B.: Two distinct mechanisms of coherence in randomly perturbed dynamical systems. Phys. Rev. E 72(3), 031105 (2005)

    Google Scholar 

  72. Piwonski, T., Houlihan, J., Busch, T., Huyet, G.: Delay-induced excitability. Phys. Rev. Lett. 95(4), 040601 (2005)

    Google Scholar 

  73. Murali, K., Miliotis, A., Ditto, W.L., Sinha, S.: Logic from nonlinear dynamical evolution. Phys. Lett. A 373(15), 1346–1351 (2009)

    MATH  Google Scholar 

  74. Zhu, J., Zhang, T., Yang, Y., Huang, R.: A comprehensive review on emerging artificial neuromorphic devices. Appl. Phys. Rev. 7(1), 011312 (2020)

    Google Scholar 

  75. Tang, J., Yuan, F., Shen, X., Wang, Z., Rao, M., He, Y., Sun, Y., Li, X., Zhang, W., Li, Y., Gao, B., Qian, H., Bi, G., Song, S., Yang, J.J., Wu, H.: Bridging biological and artificial neural networks with emerging neuromorphic devices: fundamentals, progress, and challenges. Adv. Mater. 31(49), 1902761 (2019)

    Google Scholar 

  76. Rajasekharan, D., Gaidhane, A., Trivedi, A.R., Chauhan, Y.S.: Ferroelectric FET-based implementation of FitzHugh-Nagumo NEURON Model. IEEE Trans. Comput. Aid. D. 41(7), 2107–2114 (2022)

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenggui Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Yao, C. Autapse-induced logical resonance in the FitzHugh–Nagumo neuron. Nonlinear Dyn 111, 4807–4821 (2023). https://doi.org/10.1007/s11071-022-08091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08091-1

Keywords

Navigation