Skip to main content
Log in

Numerical simulations of confined Brownian-yet-non-Gaussian motion

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Brownian motion is a central scientific paradigm. Recently, due to increasing efforts and interests towards miniaturization and small-scale physics or biology, the effects of confinement on such a motion have become a key topic of investigation. Essentially, when confined near a wall, a particle moves much slower than in the bulk due to friction at the boundaries. The mobility is therefore locally hindered and space-dependent, which in turn leads to the apparition of so-called multiplicative noises, and associated non-Gaussianities which remain difficult to resolve at all times. Here, we exploit simple, optimized and efficient numerical simulations to address Brownian motion in confinement in a broadrange and quantitative way. To do so, we integrate the overdamped Langevin equation governing the thermal dynamics of a negatively-buoyant single spherical colloid within a viscous fluid confined by two rigid walls, including surface charges. From the produced large set of long random trajectories, we perform a complete statistical analysis and extract all the key quantities, such as the probability distributions in displacements and their main moments. In particular, we propose a novel method to compute high-order cumulants by reducing convergence problems, and employ it to efficiently characterize the inherent non-Gaussianity of the confined process.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

Data produced for this article are available upon reasonable request to the authors.

References

  1. R. Brown, A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Philosop. Mag. 4(21), 161–173 (1828)

    Google Scholar 

  2. A. Einstein, über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik 4, 549–560 (1905)

    Article  ADS  MATH  Google Scholar 

  3. W. Sutherland, A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin. Lond. Edinb. Dublin Philosop. Mag. J. Sci. 9(54), 781–785 (1905)

    Article  Google Scholar 

  4. M. von Smoluchowski, Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Annalen der Physik 326(14), 756–780 (1906)

    Article  ADS  MATH  Google Scholar 

  5. J. Perrin, Mouvement brownien et grandeurs moléculaires. Le Radium 6(12), 353–360 (1909)

    Article  Google Scholar 

  6. P. Langevin, Sur la théorie du mouvement brownien. C. R. Acad. Sci. (Paris) 146, 530–533 (1908)

    MATH  Google Scholar 

  7. A. Genthon, The concept of velocity in the history of Brownian motion. Eur. Phys. J. H 45, 49 (2020)

    Article  Google Scholar 

  8. V. Ardourel, Brownian motion from a deterministic system of particles. Synthese 200, 0–1 (2022)

    Article  MathSciNet  Google Scholar 

  9. H. Brenner, The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Eng. Sci. 16(3–4), 242–251 (1961)

    Article  Google Scholar 

  10. G.K. Batchelor, Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74(1), 1–29 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. X. Bian, C. Kim, G.E. Karniadakis, 111 years of Brownian motion. Soft Matter. 12, 6331 (2016)

    Article  ADS  Google Scholar 

  12. L.P. Faucheux, A.J. Libchaber, Confined Brownian motion. Phys. Rev. E 49(6), 5158–5163 (1994)

    Article  ADS  Google Scholar 

  13. E.R. Dufresne, T.M. Squires, M.P. Brenner, D.G. Grier, Hydrodynamic coupling of two Brownian spheres to a planar surface. Phys. Rev. Lett. 85, 3317 (2000)

    Article  ADS  Google Scholar 

  14. B.U. Felderhof, Effect of the wall on the velocity autocorrelation function and long-time tail of Brownian motion. J. Phys. Chem. B 109, 21406 (2005)

    Article  Google Scholar 

  15. L. Joly, C. Ybert, L. Bocquet, Probing the nanohydrodynamics at liquid-solid interfaces using thermal motion. Phys. Rev. Lett. 96, 046101 (2006)

    Article  ADS  Google Scholar 

  16. H.B. Eral, J.M. Oh, D. van den Ende, F. Mugele, M.H.G. Duits, Anisotropic and hindered diffusion of colloidal particles in a closed cylinder. Langmuir 26, 16722 (2010)

    Article  Google Scholar 

  17. O. Bénichou, A. Bodrova, D. Chakraborty, P. Illien, A. Law, C. Mejia-Monasterio, G. Oshanin, R. Voituriez, Geometry-induced superdiffusion in driven crowded systems. Phys. Rev. Lett. 111, 260601 (2013)

    Article  ADS  Google Scholar 

  18. J. Mo, A. Simha, M.G. Raizen, Broadband boundary effects on Brownian motion. Phys. Rev. E 92, 062106 (2015)

    Article  ADS  Google Scholar 

  19. M. Matse, M.V. Chubynsky, J. Bechhoefer, Test of the diffusing-diffusivity mechanism using near-wall colloidal dynamics. Phys. Rev. E 96(4), 042604 (2017)

    Article  ADS  Google Scholar 

  20. A. Gubbiotti, M. Chinappi, C.M. Casciola, Confinement effects on the dynamics of a rigid particle in a nanochannel. Phys. Rev. E 100, 053307 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  21. T.R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon, V. Croquette, The elasticity of a single supercoiled DNA molecule. Science 271(5257), 1835–1837 (1996)

    Article  ADS  MATH  Google Scholar 

  22. U. Bockelmann, P. Thomen, B. Essevaz-Roulet, V. Viasnoff, F. Heslot, Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophys J 82(3), 1537–1553 (2002)

    Article  Google Scholar 

  23. S.K. Sainis, V. Germain, E.R. Dufresne, Statistics of particle trajectories at short time intervals reveal FN-scale colloidal forces. Phys. Rev. Lett. 99, 018303 (2007)

    Article  ADS  Google Scholar 

  24. M. Lavaud, T. Salez, Y. Louyer, Y. Amarouchene, Stochastic inference of surface-induced effects using Brownian motion. Phys. Rev. Res. 3, L032011 (2021)

    Article  Google Scholar 

  25. M. Rieu, T. Vieille, G. Radou, R. Jeanneret, N. Ruiz-Gutierrez, B. Ducos, J.-F. Allemand, V. Croquette, Parallel, linear, and subnanometric 3d tracking of microparticles with stereo darkfield interferometry. Sci. Adv. 7(6), eabe3902 (2021)

    Article  ADS  Google Scholar 

  26. Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yodh, Brownian motion of an ellipsoid. Science 314(5799), 626–630 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. T. Munk, F. Höfling, E. Frey, T. Franosch, Effective Perrin theory for the anisotropic diffusion of a strongly hindered rod. EPL (Europhys. Lett.) 85(3), 30003 (2009)

    Article  ADS  Google Scholar 

  28. B. Wang, S.M. Anthony, S.C. Bae, S. Granick, Anomalous yet Brownian. Proc. Nat. Acad. Sci. 106(36), 15160–15164 (2009)

    Article  ADS  Google Scholar 

  29. K.C. Leptos, J.S. Guasto, J.P. Gollub, A.I. Pesci, R.E. Goldstein, Dynamics of enhanced tracer diffusion in suspensions of swimming eukaryotic microorganisms. Phys. Rev. Lett. 103(19), 198103 (2009)

    Article  ADS  Google Scholar 

  30. B. Wang, J. Kuo, S.C. Bae, S. Granick, When Brownian diffusion is not gaussian. Nature Mater. 11(6), 481–485 (2012)

    Article  ADS  Google Scholar 

  31. M.J. Skaug, J. Mabry, D.K. Schwartz, Intermittent molecular hopping at the solid–liquid interface. Phys. Rev. Lett. 110(25), 256101 (2013)

    Article  ADS  Google Scholar 

  32. M.V. Chubynsky, G.W. Slater, Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion. Phys. Rev. Lett. 113(9), 098302 (2014)

    Article  ADS  Google Scholar 

  33. J. Guan, B. Wang, S. Granick, Even hard-sphere colloidal suspensions display Fickian yet non-gaussian diffusion. ACS Nano 8(4), 3331–3336 (2014)

    Article  Google Scholar 

  34. R. Jain, K.L. Sebastian, Diffusion in a crowded, rearranging environment. J. Phys. Chem. B 120(16), 3988–3992 (2016)

    Article  Google Scholar 

  35. R. Jain, K.L. Sebastian, Diffusing diffusivity: survival in a crowded rearranging and bounded domain. J. Phys. Chem. B 120(34), 9215–9222 (2016)

    Article  Google Scholar 

  36. A.V. Chechkin, F. Seno, R. Metzler, I.M. Sokolov, Brownian yet non-gaussian diffusion: from superstatistics to subordination of diffusing diffusivities. Phys. Rev. X 7(2), 021002 (2017)

    Google Scholar 

  37. V. Sposini, A. Chechkin, R. Metzler, First passage statistics for diffusing diffusivity. J. Phys. A: Math Theor 52(4), 04LT01 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Lanoiselée, N. Moutal, D.S. Grebenkov, Diffusion-limited reactions in dynamic heterogeneous media. Nat. Commun. 9(1), 4398 (2018)

    Article  ADS  Google Scholar 

  39. Y. Lanoiselée, D.S. Grebenkov, A model of non-gaussian diffusion in heterogeneous media. J. Phys. A Math. Theor 51(14), 145602 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. P. Czajka, J.M. Antosiewicz, M. Długosz, Effects of hydrodynamic interactions on the near-surface diffusion of spheroidal molecules. ACS Omega 4(16), 17016–17030 (2019)

    Article  Google Scholar 

  41. I. Chakraborty, Y. Roichman, Disorder-induced Fickian, yet non-gaussian diffusion in heterogeneous media. Phys. Rev. Res. 2(2), 022020 (2020)

    Article  Google Scholar 

  42. M. Hidalgo-Soria, E. Barkai, Hitchhiker model for Laplace diffusion processes. Phys. Rev. E 102(1), 012109 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  43. Q. Yin, Y. Li, F. Marchesoni, S. Nayak, P.K. Ghosh, Non-gaussian normal diffusion in low dimensional systems. Front. Phys. 16(3), 1–14 (2021)

    Article  Google Scholar 

  44. J.M. Miotto, S. Pigolotti, A.V. Chechkin, S. Roldán-Vargas, Length scales in Brownian yet non-gaussian dynamics. Phys. Rev. X 11(3), 031002 (2021)

    Google Scholar 

  45. A. Alexandre, M. Lavaud, N. Fares, E. Millan, Y. Louyer, T. Salez, Y. Amarouchene, T. Guérin, D.S. Dean, Non-Gaussian diffusion near surfaces. Phys. Rev. Lett. 130(7), 077101 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  46. S. Marbach, D.S. Dean, L. Bocquet, Transport and dispersion across wiggling nanopores. Nature Phys. 14, 1108 (2018)

    Article  ADS  Google Scholar 

  47. R. Sarfati, C.P. Calderon, D.K. Schwartz, Enhanced diffusive transport in fluctuating porous media. ACS Nano 15, 7392 (2021)

    Article  Google Scholar 

  48. O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Optimizing intermittent reaction paths. Phys. Chem. Chem. Phys. 10, 7059 (2008)

    Article  Google Scholar 

  49. G. Boniello, C. Tribet, E. Marie, V. Croquette, D. Zanchi, Rolling and aging in temperature-ramp soft adhesion. Phys. Rev. E 97, 012609 (2018)

    Article  ADS  Google Scholar 

  50. A. Alexandre, M. Mangeat, T. Guérin, D.S. Dean, How stickiness can speed up diffusion in confined systems. Phys. Rev. Lett. 128, 210601 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  51. T. Bickel, Brownian motion near a liquid-like membrane. Eur. Phys. J. E 20, 379 (2006)

    Article  Google Scholar 

  52. G.M. Wang, R. Prabhakar, E.M. Sevick, Hydrodynamic mobility of an optically trapped colloidal particle near fluid-fluid interfaces. Phys. Rev. Lett. 103, 248303 (2009)

    Article  ADS  Google Scholar 

  53. A. Daddi-Moussa-Ider, A. Guckenberger, S. Gekle, Particle mobility between two planar elastic membranes: Brownian motion and membrane deformation. Phys. Fluids 28, 071903 (2016)

    Article  ADS  Google Scholar 

  54. C. Bar-Haim, H. Diamant, Correlations in suspensions confined between viscoelastic surfaces: noncontact microrheology. Phys. Rev. E 96, 022607 (2017)

    Article  ADS  Google Scholar 

  55. C.M. Cejas, F. Monti, M. Truchet, J.-P. Burnouf, P. Tabeling, Particle deposition kinetics of colloidal suspensions in microchannels at high ionic strength. Langmuir 33, 6471 (2017)

    Article  Google Scholar 

  56. A. Vilquin, V. Bertin, P. Soulard, G. Guyard, E. Raphaël, F. Restagno, T. Salez, J.D. McGraw, Time dependence of advection-diffusion coupling for nanoparticle ensembles. Phys. Rev. Fluids 6, 064201 (2021)

    Article  ADS  Google Scholar 

  57. A. Vilquin, V. Bertin, E. Raphaël, D.S. Dean, T. Salez, J.D. McGraw, Nanoparticle Taylor dispersion near charged surfaces with an open boundary. Phys. Rev. Lett. 130, 038201 (2023)

    Article  ADS  Google Scholar 

  58. G. Volpe, G. Volpe, Simulation of a Brownian particle in an optical trap. Am. J. Phys. 81(3), 224–230 (2013)

    Article  ADS  MATH  Google Scholar 

  59. E.A.J.F. Peters, T.M.A.O.M. Barenbrug, Efficient Brownian dynamics simulation of particles near walls. I. Reflecting and absorbing walls. Phys. Rev. E 66, 056701 (2002)

    Article  ADS  Google Scholar 

  60. Pauline Simonnin, Benoît Noetinger, Carlos Nieto-Draghi, Virginie Marry, Benjamin Rotenberg, Diffusion under confinement: hydrodynamic finite-size effects in simulation. J. Chem. Theory Comput. 13(6), 2881–2889 (2017). Publisher: American Chemical Society

  61. B. Sprinkle, E.B. van der Wee, Y. Luo, M.M. Driscoll, A. Donev, Driven dynamics in dense suspensions of microrollers. Soft Matter. 16(34), 7982–8001 (2020). (Publisher: Royal Society of Chemistry)

    Article  ADS  Google Scholar 

  62. S.F. Knowles, N.E. Weckman, J.-Y. Lim. Vincent, D.J. Bonthuis, U.F. Keyser, A.L. Thorneywork, Current fluctuations in nanopores reveal the polymer-wall adsorption potential. Phys. Rev. Lett. 127(13), 137801 (2021). (Publisher: American Physical Society)

    Article  ADS  Google Scholar 

  63. S. Marbach, Intrinsic fractional noise in nanopores: the effect of reservoirs. J. Chem. Phys. 154(17), 171101 (2021). (Publisher: American Institute of Physics)

    Article  ADS  Google Scholar 

  64. T. Franosch, M. Grimm, M. Belushkin, F.M. Mor, G. Foffi, L. Forró, S. Jeney, Resonances arising from hydrodynamic memory in Brownian motion. Nature 478(7367), 85–88 (2011). (Number: 7367 Publisher: Nature Publishing Group)

    Article  ADS  Google Scholar 

  65. O. Maxian, R.P. Peláez, L. Greengard, A. Donev, A fast spectral method for electrostatics in doubly periodic slit channels. J. Chem. Phys. 154(20), 204107 (2021)

    Article  ADS  Google Scholar 

  66. S.H. Behrens, D.G. Grier, The charge of glass and silica surfaces. J. Chem. Phys. 115(14), 6716–6721 (2001)

    Article  ADS  Google Scholar 

  67. M.I.M. Feitosa, O.N. Mesquita, Wall-drag effect on diffusion of colloidal particles near surfaces: a photon correlation study. Phys. Rev. A 44(10), 6677–6685 (1991)

    Article  ADS  Google Scholar 

  68. D. Duque-Zumajo, J.A. de la Torre, D. Camargo, P. Español, Discrete hydrodynamics near solid walls: Non-Markovian effects and the slip boundary condition. Phys. Rev. E 100(6), 062133 (2019). (Publisher: American Physical Society)

    Article  ADS  MathSciNet  Google Scholar 

  69. M.A. Bevan, D.C. Prieve, Hindered diffusion of colloidal particles very near to a wall: revisited. J. Chem. Phys. 113(3), 1228–1236 (2000)

    Article  ADS  Google Scholar 

  70. H. Faxen, Die Bewegung einer starren Kugel langs der Achse eines mit zaher Flussigkeit gefullten Rohres. Arkiv for Matemetik Astronomi och Fysik 17, 1–28 (1923)

    MATH  Google Scholar 

  71. A.J. Goldman, R.G. Cox, H. Brenner, Slow viscous motion of a sphere parallel to a plane wall-II Couette flow. Chem. Eng. Sci. 22(4), 653–660 (1967)

    Article  Google Scholar 

  72. R. Mannella, P.V.E. McClintock, Itô versus stratonovich: 30 years later. Fluct. Noise Lett. 11(01), 1240010 (2012)

    Article  Google Scholar 

  73. J.M. Sancho, Brownian colloidal particles: ito, stratonovich, or a different stochastic interpretation. Phys. Rev. E 84(6), 062102 (2011)

    Article  ADS  Google Scholar 

  74. M. Matsumoto, T. Nishimura, Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)

    Article  MATH  Google Scholar 

  75. W. David, Scott. Box-Muller transformation. WIREs. Comput. Stat. 3(2), 177–179 (2011)

    Article  Google Scholar 

  76. D.-U. Lee, J.D. Villasenor, W. Luk, P.H.W. Leong, A hardware Gaussian noise generator using the Box-Muller method and its error analysis. IEEE Trans. Comput. 55(6), 659–671 (2006)

    Article  Google Scholar 

  77. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York, 1986)

  78. G. Van Rossum, F.L. Drake Jr., Python Tutorial (Centrum voor Wiskunde en Informatica, Amsterdam, 1995)

    Google Scholar 

  79. S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D.S. Seljebotn, K. Smith, Cython: the best of both worlds. Comput. Sci. Eng. 13(2), 31–39 (2011)

    Article  Google Scholar 

  80. C.L. Vestergaard, J.N. Pedersen, K.I. Mortensen, H. Flyvbjerg, Estimation of motility parameters from trajectory data. Eur. Phys. J. Spec. Top. 224(7), 1151–1168 (2015)

    Article  Google Scholar 

  81. J.-F. Rupprecht, A. Singh Vishen, G.V. Shivashankar, M. Rao, J. Prost, Maximal fluctuations of confined actomyosin gels: dynamics of the cell nucleus. Phys. Rev. Lett. 120, 098001 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank Arthur Alexandre, Nicolas Fares, Yann Louyer, Thomas Guérin and David Dean, for interesting discussions. They acknowledge financial support from the European Union through the European Research Council under EMetBrown (ERC-CoG-101039103) grant. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them. The authors also acknowledge financial support from the Agence Nationale de la Recherche under EMetBrown (ANR-21-ERCC-0010-01), Softer (ANR-21-CE06-0029), and Fricolas (ANR-21-CE06-0039) grants. Finally, they thank the Soft Matter Collaborative Research Unit, Frontier Research Center for Advanced Material and Life Science, Faculty of Advanced Life Science at Hokkaido University, Sapporo, Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and T.S. conceived the study. E.M. and M.L. performed the research. E.M. wrote the first draft of the manuscript. All the authors discussed the data and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Thomas Salez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Millan, E., Lavaud, M., Amarouchene, Y. et al. Numerical simulations of confined Brownian-yet-non-Gaussian motion. Eur. Phys. J. E 46, 24 (2023). https://doi.org/10.1140/epje/s10189-023-00281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00281-y

Navigation