Skip to main content
Log in

Impact of random-field-type disorder on nematic liquid crystalline structures

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study bicomponent systems where one component represents a liquid crystalline (LC) phase, and the other component randomly perturbs the LC order. Such systems can serve as a testbed to systematically analyse the impact of qualitatively different types of random-type sources of perturbation on the orientational and/or translational order. This mini-review presents typical representatives of such systems, where orientational and translational order is probed in nematic and smectic A LCs, respectively. As a source of perturbation, we consider either different porous matrices (control-pore glass, aerogels) or aerosil nanoparticles, which can form in LCs' different fractal-like network organizations. In such complex systems, LC ordering fingerprints the interplay among LC elastic forces, interfacial forces, and randomness. The resulting LC behaviour could be characterised by either long-range, quasi long-range, or short-range order. We demonstrate under which conditions random-field-like phenomena or interfacial effects dominate. However, these effects are relatively strongly entangled in most experimental systems, and individual impacts cannot be precisely identified.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.P. Crawford, S. Žumer, Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, 1st edn. (Taylor and Francis Group, London, 1996)

    Book  Google Scholar 

  2. T. Bellini, L. Radzihovsky, J. Toner, N.A. Clark, Universality and scaling in the disordering of a smectic liquid crystal. Science 294(5544), 1074–1079 (2001). https://doi.org/10.1126/science.1057480

    Article  ADS  Google Scholar 

  3. D.S. Ramakrishna, T.J. Jose, P.L. Praveen, Translational and rotational phase ordering of symmetric dimer mesogens: Molecular rigidity effect. J. Mol. Struc. 1236, 130336 (2021). https://doi.org/10.1016/j.molstruc.2021.130336

    Article  Google Scholar 

  4. J. Walton, N.J. Mottram, G. McKay, Nematic liquid crystal director structures in rectangular regions. Phys. Rev. E 97, 022702 (2018). https://doi.org/10.1103/PhysRevE.97.022702

    Article  ADS  Google Scholar 

  5. T. Raistrick, M. Reynolds, H.F. Gleeson, J. Mattsson, Influence of liquid crystallinity and mechanical deformation on the molecular relaxations of an auxetic liquid crystal elastomer. Molecules 26(23), 7313 (2021). https://doi.org/10.3390/molecules26237313

    Article  Google Scholar 

  6. A. Ranjkesh, M. Ambrožič, S. Kralj, T.J. Sluckin, Computational studies of history dependence in nematic liquid crystals in random environments. Phys. Rev. E 89, 022504 (2014). https://doi.org/10.1103/PhysRevE.89.022504

    Article  ADS  Google Scholar 

  7. J. Chakrabarti, Simulation evidence of critical behaviour of isotropic-nematic phase transition in a porous medium. Phys. Rev. Lett. 81, 385 (1998). https://doi.org/10.1103/PhysRevLett.81.385

    Article  ADS  Google Scholar 

  8. M. Kleman, O.D. Lavrentovich, Soft Matter Physics: An Introduction, 1st edn. (Springer, New York, 2004)

    Book  Google Scholar 

  9. P. Palffy-Muhoray, The diverse world of liquid crystals. Phys. Today 60(9), 54 (2007). https://doi.org/10.1063/1.2784685

    Article  Google Scholar 

  10. G.S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions. Phys. Rev. E 58, 5966 (1998). https://doi.org/10.1103/PhysRevE.58.5966

    Article  ADS  Google Scholar 

  11. G. Cordoyiannis, S. Kralj, G. Nounesis, S. Žumer, Z. Kutnjak, Soft-stiff regime crossover for an aerosil network dispersed in liquid crystals. Phys. Rev. E 73, 031707 (2006). https://doi.org/10.1103/PhysRevE.73.031707

    Article  ADS  Google Scholar 

  12. J. Barre, A.R. Bishop, T. Lookman, A. Saxena, Adaptability and “intermediate phase” in randomly connected networks. Phys. Rev. Lett. 94, 208701 (2005). https://doi.org/10.1103/PhysRevLett.94.208701

    Article  ADS  Google Scholar 

  13. G.S. Iannacchione, S. Park, C.W. Garland, R.J. Birgeneau, R.L. Leheny, Smectic ordering in liquid-crystal–aerosil dispersions. I. Scaling analysis. Phys. Rev. E 67, 011709 (2003). https://doi.org/10.1103/PhysRevE.67.011709

    Article  ADS  Google Scholar 

  14. T. Bellini, M. Buscaglia, C. Chiccoli, F. Mantegazza, P. Pasini, C. Zannoni, Nematics with quenched disorder: what is left when long range order is disrupted? Phys. Rev. Lett. 85, 1008 (2000). https://doi.org/10.1103/PhysRevLett.85.1008

    Article  ADS  Google Scholar 

  15. T. Jin, D. Finotello, Controlling disorder in liquid crystal aerosil dispersions. Phys. Rev. E 69, 041704 (2004). https://doi.org/10.1103/PhysRevE.69.041704

    Article  ADS  Google Scholar 

  16. J. Fricke, Aerogels — highly tenuous solids with fascinating properties. J. Non-Cryst. Solids 100(1–3), 169–173 (1988). https://doi.org/10.1016/0022-3093(88)90014-2

    Article  ADS  Google Scholar 

  17. A. Zidanšek, S. Kralj, G. Lahajnar, R. Blinc, Deuteron NMR study of liquid crystals confined in aerogel matrices. Phys. Rev. E 51, 3332 (1995). https://doi.org/10.1103/PhysRevE.51.3332

    Article  ADS  Google Scholar 

  18. S. Kralj, A. Zidanšek, G. Lahajnar, S. Žumer, R. Blinc, Influence of surface treatment on the smectic ordering within porous glass. Phys. Rev. E 62, 718 (2000). https://doi.org/10.1103/PhysRevE.62.718

    Article  ADS  Google Scholar 

  19. S. Kralj, A. Zidanšek, G. Lahajnar, S. Žumer, R. Blinc, Phase behaviour of liquid crystals confined to controlled porous glass studied by deuteron NMR. Phys. Rev. E 57, 3021 (1998). https://doi.org/10.1103/PhysRevE.57.3021

    Article  ADS  Google Scholar 

  20. S. Kralj, A. Zidanšek, G. Lahajnar, I. Muševič, S. Žumer, R. Blinc, M.M. Pintar, Nematic ordering in porous glasses: a deuterium NMR study. Phys. Rev. E 53, 3629 (1996). https://doi.org/10.1103/PhysRevE.53.3629

    Article  ADS  Google Scholar 

  21. G.S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Calorimetric and small angle x-ray scattering study of phase transitions in octylcyanobiphenyl-aerosil dispersions. Phys. Rev. E 58(5), 5966 (1998). https://doi.org/10.1103/PhysRevE.58.5966

    Article  ADS  Google Scholar 

  22. D.S. Fisher, G.M. Grinstein, A. Khurana, Theory of random magnets. Phys. Today 41(12), 56–67 (1988). https://doi.org/10.1063/1.881141

    Article  ADS  Google Scholar 

  23. Y. Imry, S. Ma, Random-field instability of the ordered state of continuous symmetry. Phys. Rev. Lett 35, 1399–1401 (1975). https://doi.org/10.1103/PhysRevLett.35.1399

    Article  ADS  Google Scholar 

  24. A.B. Harris, Effect of random defects on critical behaviour of Ising models. J. Phys. C: Solid State Phys. 7, 1671–1692 (1974). https://doi.org/10.1088/0022-3719/7/9/009

    Article  ADS  Google Scholar 

  25. A. Aharony, Critical behaviour of amorphous magnets. Phys. Rev. B 12, 1038–1048 (1975). https://doi.org/10.1103/PhysRevB.12.1038

    Article  ADS  Google Scholar 

  26. A.I. Larkin, Effect of inhomogeneities on structure of mixed state of superconductors. Sov. Phys. JETP 31, 784–791 (1970)

    ADS  Google Scholar 

  27. A. Aharony, E. Pytte, Infinite susceptibility phase in random uniaxial anisotropy magnets. Phys. Rev. Lett. 45, 1583–1586 (1980). https://doi.org/10.1103/PhysRevLett.45.1583

    Article  ADS  Google Scholar 

  28. T. Giamarchi, P. Le Doussal, Elastic theory of flux lattices in the presence of weak disorder. Phys. Rev. B 52, 1242–1270 (1995). https://doi.org/10.1103/PhysRevB.52.1242

    Article  ADS  Google Scholar 

  29. A. Roshi, G.S. Iannacchione, P.S. Clegg, R.J. Birgeneau, Evolution of the isotropic-to-nematic phase transition in octyloxycyanobiphenyl+aerosil dispersions. Phys. Rev. E 69, 031703 (2004). https://doi.org/10.1103/PhysRevE.69.031703

    Article  ADS  Google Scholar 

  30. B. Zhou, G.S. Iannacchione, C.W. Garland, T. Bellini, Random-field effects on the nematic–smectic-A phase transition due to silica aerosil particles. Phys. Rev. E 55, 2962 (1997). https://doi.org/10.1103/PhysRevE.55.2962

    Article  ADS  Google Scholar 

  31. M. Marinelli, F. Mercuri, S. Paoloni, U. Zammit, Dynamics of nematic liquid crystal with quenched disorder in the random dilution and random field regimes. Phys. Rev. Lett. 95, 237801 (2005). https://doi.org/10.1103/PhysRevLett.95.237801

    Article  ADS  Google Scholar 

  32. C.C. Retsch, I. McNulty, G.S. Iannacchione, Elastic coupling of silica gel dynamics in a liquid-crystal–aerosil dispersion. Phys. Rev. E 65, 032701 (2002). https://doi.org/10.1103/PhysRevE.65.032701

    Article  ADS  Google Scholar 

  33. N. León, J.-P. Korb, I. Bonalde, P. Levitz, Universal nuclear spin relaxation and long-range order in nematics strongly confined in mass fractal silica gels. Phys. Rev. Lett. 92, 195504 (2004). https://doi.org/10.1103/PhysRevLett.92.195504

    Article  ADS  Google Scholar 

  34. T. Bellini, N.A. Clark, V. Degiorgio, F. Mantegazza, G. Natale, Light-scattering measurement of the nematic correlation length in a liquid crystal with quenched disorder Phys. Rev. E 57, 2996 (1998). https://doi.org/10.1103/PhysRevE.57.2996

    Article  Google Scholar 

  35. S. Park, R.L. Leheny, R.J. Birgeneau, J.-L. Gallani, C.W. Garland, G.S. Iannacchione, Hydrogen-bonded silica gels dispersed in a smectic liquid crystal: a random field XY system. Phys. Rev. E 65, 050703(R) (2002). https://doi.org/10.1103/PhysRevE.65.050703

    Article  ADS  Google Scholar 

  36. R.L. Leheny, S. Park, R.J. Birgeneau, J.-L. Gallani, C.W. Garland, G.S. Iannacchione, Smectic ordering in liquid-crystal–aerosil dispersions. I. X-ray scattering. Phys. Rev. E 67, 011708 (2003). https://doi.org/10.1103/PhysRevE.67.011708

    Article  ADS  Google Scholar 

  37. T. Bellini, N.A. Clark, C.D. Muzny, L. Wu, C.W. Garland, D.W. Schaefer, B.J. Oliver, Phase behaviour of the liquid crystal 8CB in a silica aerogel. Phys. Rev. Lett. 69, 788 (1992). https://doi.org/10.1103/PhysRevLett.69.788

    Article  ADS  Google Scholar 

  38. N.A. Clark, T. Bellini, R.M. Malzbender, B.N. Thomas, A.G. Rappaport, C.D. Muzny, D.W. Schaefer, L. Hrubesh, X-ray scattering study of smectic ordering in a silica aerogel. Phys. Rev. Lett. 71, 3505 (1993). https://doi.org/10.1103/PhysRevLett.71.3505

    Article  ADS  Google Scholar 

  39. X.-L. Wu, W.I. Goldburg, M.X. Liu, J.Z. Xue, Slow dynamics of isotropic-nematic phase transition in silica gels. Phys. Rev. Lett. 69, 470 (1992). https://doi.org/10.1103/PhysRevLett.69.470

    Article  ADS  Google Scholar 

  40. S. Kralj, G. Lahajnar, A. Zidanšek, N. Vrbančič-Kopač, M. Vilfan, R. Blinc, M. Kosec, Deuterium NMR of a pentylcyanobiphenyl liquid crystal confined in a silica aerogel matrix. Phys. Rev. E 48, 340 (1993). https://doi.org/10.1103/PhysRevE.48.340

    Article  ADS  Google Scholar 

  41. F. M. Aliev, M. N. Breganov, Electric polarization and dynamics of molecular motion of polar liquid crystals in microporesand macropores, Zh. Eksp. Teor. Fiz 95, 122–138 (1989) [Sov. Phys. JETP 68,70 (1989)]

  42. M.D. Dadmun, M. Muthukumar, The nematic to isotropic transition of a liquid crystal in porous media. J. Chem. Phys. 98, 4850 (1993). https://doi.org/10.1063/1.464994

    Article  ADS  Google Scholar 

  43. Z. Kutnjak, S. Kralj, G. Lahajnar, S. Žumer, Calorimetric study of octylcyanobiphenyl liquid crystal confined to controlled porous glass. Phys. Rev. E 68, 021705–021712 (2003). https://doi.org/10.1103/PhysRevE.68.021705

    Article  ADS  Google Scholar 

  44. Z. Kutnjak, S. Kralj, G. Lahajnar, S. Žumer, Thermal study of octylcyanobiphenyl liquid crystal confined to controlled-pore glass. Fluid Phase Equilib. 222–223, 275–281 (2004). https://doi.org/10.1016/j.fluid.2004.06.005

    Article  Google Scholar 

  45. Z. Kutnjak, S. Kralj, G. Lahajnar, S. Žumer, Influence of finite size and wetting on nematic and smectic phase behaviour of liquid crystal confined to controlled-pore matrices. Phys. Rev. E 70, 51703–51711 (2004). https://doi.org/10.1103/PhysRevE.70.051703

    Article  ADS  Google Scholar 

  46. A. Zidanšek, S. Kralj, R. Repnik, G. Lahajnar, M. Rappolt, H. Amenitsch, S. Bernstorff, Smectic ordering of octylcyanobiphenyl confined to control porous glasses. J. Phys. Cond. Matter 12, A431–A436 (2000). https://doi.org/10.1088/0953-8984/12/8A/359

    Article  ADS  Google Scholar 

  47. S. Kralj, A. Zidanšek, G. Lahajnar, S. Žumer, R. Blinc, Influence of surface treatment on the smectic ordering within porous glass. Phys. Rev. E. 62, 718–725 (2000). https://doi.org/10.1103/PhysRevE.62.718

    Article  ADS  Google Scholar 

  48. A. Zidanšek, G. Lahajnar, S. Kralj, Phase transitions in 8CB liquid crystal confined to a controlled-pore glass: deuteron NMR and small angle X-ray scattering studies. Appl. Magn. Reson. 27, 311–319 (2004). https://doi.org/10.1007/BF03166325

    Article  Google Scholar 

  49. S. Kralj, G. Cordoyiannis, A. Zidanšek, G. Lahajnar, H. Amenitsch, S. Žumer, Z. Kutnjak, Presmectic wetting and supercritical-like phase behaviour of octylcyanobiphenyl liquid crystal confined to controlled-pore glass matrices. J. Chem. Phys. 127, 154905 (2007). https://doi.org/10.1063/1.2795716

    Article  ADS  Google Scholar 

  50. H. Yao, K. Ema, C.W. Garland, Nonadiabatic scanning calorimeter. Rev. Sci. Instrum. 69, 172 (1998)

    Article  ADS  Google Scholar 

  51. B.I. Halperin, T.C. Lubensky, S.K. Ma, First-order phase transitions in superconductors and smectic-A liquid crystals. Phys. Rev. Lett. 32, 292 (1974)

    Article  ADS  Google Scholar 

  52. J. Thoen, G. Cordoyiannis, P. Losada-Perez, C. Glorieux, High-resolution investigation by Peltier-element-based adiabatic scanning calorimetry of binary liquid crystal mixtures with enhanced nematic ranges. J. Mol. Liq. 340, 117204 (2021). https://doi.org/10.1016/j.molliq.2021.117204

    Article  Google Scholar 

  53. M.A. Anisimov, P.E. Cladis, E.E. Gorodetskii, D.A. Huse, V.E. Podneks, V.G. Taratuta, W. van Saarloos, V.P. Voronov, Experimental test of a fluctuation-induced first-order phase transition: the nematic-smectic-A transition. Phys. Rev. A 41, 6749 (1999)

    Article  ADS  Google Scholar 

  54. M. Campostrini, A. Pelissetto, P. Rossi, E. Vicari, The critical equation of state for three-dimensional XY systems. Phys. Rev. B 62, 5843 (2000)

    Article  ADS  Google Scholar 

  55. P.A. Lebwohl, G. Lasher, Nematic-liquid-crystal order—a Monte Carlo calculation. Phys. Rev. A 6, 426 (1972). https://doi.org/10.1103/PhysRevA.6.426

    Article  ADS  Google Scholar 

  56. U. Fabbri, C. Zannoni, A Monte Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition. Mol. Phys. 58, 763 (1986). https://doi.org/10.1080/00268978600101561

    Article  ADS  Google Scholar 

  57. W. Maier, A. Saupe, Eine einfache molekulare Theorie des nematischen kristallinflüssigen Zustandes. Z. Naturforsch. 13, 564 (1958). https://doi.org/10.1515/zna-1958-0716

    Article  ADS  Google Scholar 

  58. S.V. Fridrikh, E.M. Terentjev, Order-disorder transition in an external field in random ferromagnets and nematic elastomers. Phys. Rev. Lett. 79, 4661 (1997). https://doi.org/10.1103/PhysRevLett.79.4661

    Article  ADS  Google Scholar 

  59. S.V. Fridrikh, E.M. Terentjev, Polydomain-monodomain transition in nematic elastomers. Phys. Rev. E 60, 1847 (1999). https://doi.org/10.1103/PhysRevE.60.1847

    Article  ADS  Google Scholar 

  60. D. J. Cleaver, S. Kralj, T. J. Sluckin, M. P. Allen, Liquid Crystals in Complex Geometries Formed by Polymer and Porous Networks, 1st edition (Edited by G.P. Crawford & S. Žumer, Taylor and Francis Group, London, 1996)

  61. R. Harris, M.J. Plischke, M.J. Zuckermann, New model for amorphous magnetism. Phys. Rev. Lett. 31, 160 (1973). https://doi.org/10.1103/PhysRevLett.31.160

    Article  ADS  Google Scholar 

  62. D.R. Denholm, T.J. Sluckin, Monte Carlo studies of two-dimensional random-anisotropy magnets. Phys. Rev. B 48, 901 (1993). https://doi.org/10.1103/PhysRevB.48.901

    Article  ADS  Google Scholar 

  63. R. Eppenga, D. Frenkel, Monte Carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol. Phys. 52, 1303 (1984). https://doi.org/10.1080/00268978400101951

    Article  ADS  Google Scholar 

  64. S. Kralj, G. Cordoyiannis, D. Jesenek, A. Zidanšek, G. Lahajnar, N. Novak, H. Amenitsch, Z. Kutnjak, Dimensional crossover and scaling behaviour of a smectic liquid crystal confined to controlled-pore glass matrices. Soft Matter 8, 2460 (2012). https://doi.org/10.1039/c1sm06884a

    Article  ADS  Google Scholar 

  65. S. Kralj, G. Cordoyiannis, D. Jesenek, G. Lahajnar, Z. Kutnjak, Memory-controlled smectic wetting of liquid crystals confined to controlled-pore matrices. Fluid. Phase Equilib. 351, 87 (2013). https://doi.org/10.1016/j.fluid.2012.09.041

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Slovenian Research Agency grants P1-0099, P1-0125, P2-0348, and J1-2457.

Funding

The paper is associated with the International Seminar on Soft Matter & Food – Physico-Chemical Models & Socio-Economic Parallels, 1st Polish-Slovenian Edition, Celestynów, Poland, 22–23 November, 2021; Directors: Aleksandra Drozd-Rzoska (Institute of High Pressure Physics PAS, Warsaw, Poland) and Samo Kralj (University of Maribor, Maribor, Slovenia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Zidanšek.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Appendices

Appendix A

Mesoscopic bulk LC behaviour

Below we present a simple phenomenological description of the LC ordering using the Landau-de Gennes–Ginzburg [8]-type phenomenological description.

The orientational ordering is presented by the nematic tensor order parameter \(\underline{Q}\). The latter allows both uniaxial and biaxial states. In this presentation, we neglect biaxial states and consequently, we use the parametrisation in terms of the nematic director field \(\overrightarrow{n}\) and the nematic uniaxial order parameter S as

$$\underline{Q}=S\left(\overrightarrow{n}\otimes \overrightarrow{n}-\underline{I}/3\right)$$
(A1)

Note that states with S > 0 (S < 0) determine to prolate (oblate) uniaxial shapes in the mesoscopic geometric presentation of nematic order. In bulk equilibrium \(\underline{Q}\) is spatially homogeneous.

The SmA layering is described by the complex order parameter in terms of the smectic phase \(\phi \) and the translational order parameter amplitude \(\eta :\)

$$\psi =\eta {e}^{i\phi }$$
(A2)

It approximately describes the LC mass density spatial variation \(\rho ={\rho }_{0}\left(1+\psi +{\psi }^{*}\right),\) where \({\rho }_{0}\) is a constant. In bulk equilibrium \(\eta \) is spatially homogeneous, \(\phi ={q}_{0}\overrightarrow{n}.\overrightarrow{r}\) and the periodicity \({q}_{0}=2\pi /{d}_{0}\) determines the smectic layer spacing d0.

Thermotropic LCs exhibiting either an I-N-SmA phase sequence or a direct I-SmA phase transition are considered below. In addition, we consider cases where LC is either confined by an interface (e.g., in CPG matrices) or encloses NPs (e.g., aerosils).

The free energy F of the system is expressed as

$$F=\iiint \left({f}_{c}^{(n)}+{f}_{e}^{(n)}+{f}_{c}^{(s)}+{f}_{e}^{(s)}+{f}_{cp}\right){d}^{3}r+\iint \left({f}_{i}^{(n)}+{f}_{i}^{(s)}\right){d}^{2}r$$
(A3)

where the first integral runs over the LC body and the second integral over the interfaces in contact with LC. Using minimal model, we express the free energy densities in Eq. (A3) as

$${f}_{c}^{(n)}={a}_{n}\left(T-{T}_{n}^{*}\right)Tr{\underline{Q}}^{2}-{b}_{n}{\underline{Q}}^{3}+{c}_{n}{\left({\underline{Q}}^{2}\right)}^{2}$$
(A4a)
$${f}_{c}^{(s)}={a}_{s}\left(T-{T}_{s}^{*}\right){\left|\psi \right|}^{2}+{b}_{s}{\left|\psi \right|}^{4}$$
(A4b)
$${f}_{e}^{(n)}=L{\left|\nabla \underline{Q}\right|}^{2}$$
(A4c)
$${f}_{e}^{(s)}={C}_{\parallel }{\left|\left(i{q}_{0}\overrightarrow{n}-\nabla \right)\psi \right|}^{2}+{C}_{\perp }{\left|\left(\overrightarrow{n}\times \nabla \right)\psi \right|}^{2}$$
(A4d)
$${f}_{cp}=-D\nabla \psi .\underline{Q}\nabla {\psi }^{*}$$
(A4e)
$${f}_{i}^{(n)}=-{W}_{n}\overrightarrow{e}.\underline{Q}\overrightarrow{e}$$
(A4f)
$${f}_{i}^{(s)}=-\left({W}_{s}^{*}\psi +{W}_{s}{\psi }^{*}\right)$$
(A4g)

The condensation nematic \({(f}_{c}^{(n)})\), condensation smectic \({(f}_{c}^{(s)})\), and the coupling \(\left({f}_{cp}\right)\) terms determine the equilibrium value of the nematic (\(S={S}_{eq}\)) and smectic (\(\eta ={\eta }_{eq}\)) order parameter in bulk elastically undistorted samples. The quantities \({a}_{n},{b}_{n},{c}_{n},{T}_{n}^{*},\) \({a}_{s},{b}_{s},{T}_{s}^{*},D\) are positive material constants. In particular, \(D\) determines the coupling strength between the nematic and the smectic order parameters. The nematic and smectic elastic properties are determined by the nematic elastic constant L (we use the approximation of equal nematic elastic constants) and the smectic compressibility \({(C}_{\parallel })\) and smectic bend \({(C}_{\perp })\) elastic constant. The positive nematic elastic constant enforces spatially homogeneous nematic order. Furthermore, the positive smectic elastic constants enforce smectic layer spacing \({d}_{0}=2\pi /{q}_{0}\) and orientation of \(\overrightarrow{n}\) along the smectic layer normal. The interfacial terms are characterised by positive nematic (\({W}_{n}\)) and smectic \({(W}_{s})\) surface interaction strengths, and \(\overrightarrow{e}\) stands for the easy (i.e., local interface preferred) orientation. Such surface interaction terms tend to support LC ordering.

If the nematic and smectic order parameters are decoupled (D = 0) the equilibrium phase behaviour is as follows. The isotropic supercooling temperature is equal to \({T}_{n}^{*}\), and the first order I-N phase transition takes place at \({T}_{IN}={T}_{n}^{*}+\frac{{b}_{n}^{2}}{24{a}_{n}{c}_{n}}\). Above and below \({T}_{IN}\) it holds \({S}_{eq}\left[T>{T}_{IN}\right]=0\) and \({S}_{eq}\left[T\le {T}_{IN}\right]={S}_{0}\frac{3+\sqrt{9-8\left(T-{T}_{n}^{*}\right)/({T}_{IN}-{T}_{n}^{*})}}{4}\), where \({S}_{0}={S}_{eq}\left[T={T}_{IN}\right]=\frac{{b}_{n}}{4{c}_{n}}.\) The second order N-SmA phase transition is realised at \({T}_{NA}={T}_{s}^{*}<{T}_{IN}.\) It holds \({\eta }_{eq}\left[T>{T}_{NA}\right]=0\) and \({\eta }_{eq}\left[T\le {T}_{NA}\right]={\eta }_{0}\sqrt{{(T}_{NA}-T)/{T}_{NA}}\), \({\eta }_{0}=\sqrt{{T}_{NA}{a}_{s}/(2{b}_{s})}\).

In the case of coupled order parameters it is convenient to introduce scaled order parameter amplitudes: \(\widetilde{S}=\frac{S}{{S}_{0}}, \widetilde{\eta }=\frac{\eta }{{\eta }_{0}},\) dimensionless temperatures \({r}_{n}=\frac{\left(T-{T}_{n}^{*}\right)}{{T}_{IN}-{T}_{n}^{*}}\) and \({r}_{s}=\frac{\left(T-{T}_{s}^{*}\right)}{{T}_{s}^{*}}\), the dimensionless free energy density \(\widetilde{f}=\frac{3f}{{a}_{n}{(T}_{IN}-{T}_{n}^{*}){s}_{0}^{2}}\), where \(f={f}_{c}^{(n)}+{f}_{e}^{(n)}+{f}_{c}^{(s)}+{f}_{e}^{(s)}+{f}_{cp},\) and the dimensionless coupling strength \(\widetilde{D}=\frac{3D{a}_{s}^{2}{T}_{s}^{*}{\eta }_{0}^{2}}{{2a}_{n}{(T}_{IN}-{T}_{n}^{*}){s}_{0}^{2}}.\) In the absence of elastic distortions it follows

$$\widetilde{f}={r}_{n}{\widetilde{S}}^{2}-2{\widetilde{S}}^{3}+{\widetilde{S}}^{4}+\Omega \left({r}_{s}{\widetilde{\eta }}^{2}+\frac{{\widetilde{\eta }}^{4}}{2}\right)-\widetilde{D}{\widetilde{\eta }}^{2}\widetilde{S}$$
(A5)

where \(\Omega =\frac{3{a}_{s}^{2}{T}_{s}^{*}{\eta }_{0}^{2}}{{2a}_{n}{(T}_{IN}-{T}_{n}^{*}){S}_{0}^{2}}\). The equilibrium LC order is obtained by minimizing \(\widetilde{f}\) with respect to \(\widetilde{S}\) and \(\widetilde{\eta }\). On increasing \(\widetilde{D}\) two qualitative changes in LC behaviour appear, which are determined by the critical \({\widetilde{D}}_{c}^{(1)}\) and \({\widetilde{D}}_{c}^{(2)}\). Below \({\widetilde{D}}_{c}^{(1)}\) the N-SmA phase transition is continuous and discontinuous in the regime \({\widetilde{D}}_{c}^{(1)}<\widetilde{D}<{\widetilde{D}}_{c}^{(2)}\). For \(\widetilde{D}>{\widetilde{D}}_{c}^{(2)}\) the system exhibits a first order I-SmA phase transition.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zidanšek, A., Hölbl, A., Ranjkesh, A. et al. Impact of random-field-type disorder on nematic liquid crystalline structures. Eur. Phys. J. E 45, 63 (2022). https://doi.org/10.1140/epje/s10189-022-00217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00217-y

Navigation