Skip to main content
Log in

Size segregation of disk particle in two-dimensional chute

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Size segregation will lead to stratification of a particle system. At present, people have not fully understood the segregation mechanism. In this work, we have studied the size segregation behavior of two-component disk particles in chute flows. The effects of particle size ratio η, particle density ρ, static friction coefficient μ and chute angle α on size segregation are discussed. We use the discrete element method to simulate and calculate the force of disk large particles during segregation. Results show that the ‘squeeze expulsion’ mechanism plays a key role in the size segregation of a disk particle flow. We establish a physical model of ‘squeeze expulsion’ of disk particles and obtain the conditions for the formation of ‘squeeze expulsion’ mechanism.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.-S. Chen, S.-S. Hsiau, J.-R. Syu, Y.-L. Chang, Fuel 248, 136 (2019)

    Article  Google Scholar 

  2. C. Liu, X. Feng, Q. Wang, L. Wang, S. Yin, and L. Tong, Fuel 268 (2020).

  3. S. Yin, Y. He, L. Wang, C. Liu, L. Tong, Y. Ding, Powder Technol. 340, 217 (2018)

    Article  Google Scholar 

  4. M.E. Mobius, X. Cheng, P. Eshuis, G.S. Karczmar, S.R. Nagel, H.M. Jaeger, Phys Rev E 72, 011304 (2005)

    Article  ADS  Google Scholar 

  5. J. Sun, C. Liu, P. Wu, Z.A. Xie, K. Hu, L. Wang, Phys Rev E 94, 032906 (2016)

    Article  ADS  Google Scholar 

  6. T. Trewhela, J. M. N. T. Gray, and C. Ancey, Physical Review Fluids 6 (2021).

  7. S. R. N. Heinrich M. Jaeger, Rev. Mod. Phys. 68, 4 (1996).

  8. L. Li, P. Wu, S. Zhang, L. Wang, Powder Technol. 342, 954 (2019)

    Article  Google Scholar 

  9. R.D. Wildman, T.W. Martin, P.E. Krouskop, J. Talbot, J.M. Huntley, D.J. Parker, Phys Rev E 71, 061301 (2005)

    Article  ADS  Google Scholar 

  10. D.C. Hong, P.V. Quinn, S. Luding, Phys Rev Lett 86, 3423 (2001)

    Article  ADS  Google Scholar 

  11. J. Ellenberger, C.O. Vandu, R. Krishna, Powder Technol. 164, 168 (2006)

    Article  Google Scholar 

  12. T. Binaree, I. Preechawuttipong, and P. Jongchansitto, Int J. Mech. Eng.Rob Res, 230 (2021).

  13. Y. Fan, K.M. Hill, Phys Rev E 92, 022211 (2015)

    Article  ADS  Google Scholar 

  14. E. Azema, I. Preechawuttipong, F. Radjai, Phys Rev E 94, 042901 (2016)

    Article  ADS  Google Scholar 

  15. M. Jiang, P. Wu, X. Chen, H. Fu, N. Qiu, L. Wang, C. Dong, Powder Technol. 387, 205 (2021)

    Article  Google Scholar 

  16. Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008)

    Article  ADS  Google Scholar 

  17. N. Wang, H. Lu, J. Xu, X. Guo, and H. Liu, Int. J. Multiph. Flow 120 (2019).

  18. A.L. Thomas, N.M. Vriend, Phys Rev E 100, 012902 (2019)

    Article  ADS  Google Scholar 

  19. N.A. Pohlman, B.L. Severson, J.M. Ottino, R.M. Lueptow, Phys Rev E 73, 031304 (2006)

    Article  ADS  Google Scholar 

  20. O. Roche, S. van den Wildenberg, A. Valance, R. Delannay, A. Mangeney, L. Corna, T. Latchimy, Phys Rev E 103, 042905 (2021)

    Article  ADS  Google Scholar 

  21. C. Beaulieu, D. Vidal, C. Niyonkuru, A. Wachs, J. Chaouki, F. Bertrand, Comput Part Mech 409, 128039 (2021)

    Google Scholar 

  22. A. Kumar, D.V. Khakhar, A. Tripathi, Phys Rev E 100, 042909 (2019)

    Article  ADS  Google Scholar 

  23. M. Kiani Oshtorjani, L. Meng, and C. R. Muller, Phys Rev E 103, 062903 (2021).

  24. J. Sautel, C.E. Lecomte, N. Taberlet, Phys Rev E 103, 022901 (2021)

    Article  ADS  Google Scholar 

  25. R.A. Bagnold, P Roy Soc A-Math Phy 225, 49 (1954)

    Google Scholar 

  26. J.B.J.A. Drahun, Powder Technol. 36, 39 (1983)

    Article  Google Scholar 

  27. O.R. Walton, Stud. Appl. Mech. 7, 327 (1983)

    Article  ADS  Google Scholar 

  28. S.S. Wang, R. Li, Q. Chen, G. Zheng, V. Zivkovic, H. Yang, Powder Technol. 376, 22 (2020)

    Article  Google Scholar 

  29. G.-H. Huang, X.-F. Chen, X.-W. Yi, Y.-Z. Xu, S. Zhang, Z.-B. Lin, Powder Technol. 368, 202 (2020)

    Article  Google Scholar 

  30. A.M. Fry, P.B. Umbanhowar, J.M. Ottino, R.M. Lueptow, Phys Rev E 97, 062906 (2018)

    Article  ADS  Google Scholar 

  31. A. Tripathi, A. Kumar, M. Nema, D.V. Khakhar, Phys Rev E 103, L031301 (2021)

    Article  ADS  Google Scholar 

  32. R. Cai, H. Xiao, J. Zheng, Y. Zhao, Phys Rev E 99, 032902 (2019)

    Article  ADS  Google Scholar 

  33. S. Volpato, M. Tirapelle, A.C. Santomaso, Phys Rev E 102, 012902 (2020)

    Article  ADS  Google Scholar 

  34. C. Ancey, Phys Rev E 65, 011304 (2002)

    Article  ADS  Google Scholar 

  35. L.E. Silbert, D. Ertas, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Phys Rev E 64, 051302 (2001)

    Article  ADS  Google Scholar 

  36. N. Taberlet, P. Richard, A. Valance, W. Losert, J.M. Pasini, J.T. Jenkins, R. Delannay, Phys Rev Lett 91, 264301 (2003)

    Article  ADS  Google Scholar 

  37. P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979)

    Article  Google Scholar 

  38. C. Lozano, I. Zuriguel, A. Garcimartin, Phys Rev E 91, 062203 (2015)

    Article  ADS  Google Scholar 

  39. S.H.H.A. Makse, P.R. King, H.E. Stanley, Nature 386, 379 (1997)

    Article  ADS  Google Scholar 

  40. P. C. Hernan A.Makse, H.Eugene Stanley, Phys Rev E 78, 17 (1997).

  41. J.M.N.T. Gray, Annu. Rev. Fluid Mech. 50, 407 (2018)

    Article  ADS  Google Scholar 

  42. S.B. Savage, C.K.K. Lun, J. Fluid Mech. 189, 311 (1988)

    Article  ADS  Google Scholar 

  43. U. D’Ortona, N. Thomas, R.M. Lueptow, Phys Rev E 93, 022906 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to the National Natural Science Foundation of China (No. 51836009) for financial support of this work.

Author information

Authors and Affiliations

Authors

Contributions

PW was responsible for conceptualization and review of work; HF carried out formal analysis and investigation and wrote the original draft; and SS, MJ, SZ and LW participated in writing, reviewing and editing. All the authors were involved in the preparation of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ping Wu.

Ethics declarations

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Wu, P., Shi, S. et al. Size segregation of disk particle in two-dimensional chute. Eur. Phys. J. E 45, 54 (2022). https://doi.org/10.1140/epje/s10189-022-00207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00207-0

Navigation