Skip to main content

Advertisement

Log in

Analysing and simulating energy-based models in biology using BondGraphTools

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Like all physical systems, biological systems are constrained by the laws of physics. However, mathematical models of biochemistry frequently neglect the conservation of energy, leading to unrealistic behaviour. Energy-based models that are consistent with conservation of mass, charge and energy have the potential to aid the understanding of complex interactions between biological components, and are becoming easier to develop with recent advances in experimental measurements and databases. In this paper, we motivate the use of bond graphs (a modelling tool from engineering) for energy-based modelling and introduce, BondGraphTools, a Python library for constructing and analysing bond graph models. We use examples from biochemistry to illustrate how BondGraphTools can be used to automate model construction in systems biology while maintaining consistency with the laws of physics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The source code for BondGraphTools is available at https://github.com/BondGraphTools/BondGraphTools and the code for producing figures in this paper is available at https://github.com/uomsystemsbiology/BGT-Biology.]

Notes

  1. www.3ds.com/products-services/catia/products/dymola/.

  2. www.20sim.com.

  3. https://github.com/uomsystemsbiology/BGT-Biology.

  4. https://mybinder.org.

  5. http://bondgraphtools.readthedocs.io.

  6. https://github.com/BondGraphTools.

  7. https://github.com/uomsystemsbiology/BGT-Biology.

  8. https://doi.org/10.5281/zenodo.5202871.

  9. https://www.travis-ci.com.

  10. www.codeclimate.com.

References

  1. P. Kohl, E.J. Crampin, T.A. Quinn, D. Noble, Clin. Pharmacol. Ther. 88(1), 25 (2010). https://doi.org/10.1038/clpt.2010.92

    Article  Google Scholar 

  2. J.R. Karr, J.C. Sanghvi, D.N. Macklin, M.V. Gutschow, J.M. Jacobs, B. Bolival, N. Assad-Garcia, J.I. Glass, M.W. Covert, Cell 150(2), 389 (2012). https://doi.org/10.1016/j.cell.2012.05.044

    Article  Google Scholar 

  3. B. Szigeti, Y.D. Roth, J.A.P. Sekar, A.P. Goldberg, S.C. Pochiraju, J.R. Karr, Curr. Opin. Syst. Biol. 7, 8 (2018). https://doi.org/10.1016/j.coisb.2017.10.005

    Article  Google Scholar 

  4. D.N. Macklin, T.A. Ahn-Horst, H. Choi, N.A. Ruggero, J. Carrera, J.C. Mason, G. Sun, E. Agmon, M.M. DeFelice, I. Maayan, K. Lane, R.K. Spangler, T.E. Gillies, M.L. Paull, S. Akhter, S.R. Bray, D.S. Weaver, I.M. Keseler, P.D. Karp, J.H. Morrison, M.W. Covert, Science 369(6502), eaav3751 (2020). https://doi.org/10.1126/science.aav3751

  5. E.J. Crampin, N.P. Smith, P.J. Hunter, J. Mol. Histol. 35(7), 707 (2004)

    Google Scholar 

  6. P. Hunter, IEEE Pulse 7(4), 36 (2016). https://doi.org/10.1109/MPUL.2016.2563841

    Article  Google Scholar 

  7. D. Noble, Y. Rudy, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 359(1783), 1127 (2001). https://doi.org/10.1098/rsta.2001.0820

    Article  ADS  Google Scholar 

  8. T.J. Hund, J.P. Kucera, N.F. Otani, Y. Rudy, Biophys. J. 81(6), 3324 (2001). https://doi.org/10.1016/S0006-3495(01)75965-6

    Article  Google Scholar 

  9. S. Safaei, C.P. Bradley, V. Suresh, K. Mithraratne, A. Muller, H. Ho, D. Ladd, L.R. Hellevik, S.W. Omholt, J.G. Chase, L.O. Müller, S.M. Watanabe, P.J. Blanco, B. de Bono, P.J. Hunter, J. Physiol. 594(23), 6909 (2016). https://doi.org/10.1113/JP272660

    Article  Google Scholar 

  10. E. Schrödinger, What is life? The Physical Aspect of the Living Cell (The University Press; The Macmillan Company, New York, 1962)

    MATH  Google Scholar 

  11. G.F. Oster, A.S. Perelson, A. Katchalsky, Q. Rev. Biophys. 6(1), 1 (1973). https://doi.org/10.1017/S0033583500000081

    Article  Google Scholar 

  12. M. Ederer, E.D. Gilles, Biophys. J. 92(6), 1846 (2007). https://doi.org/10.1529/biophysj.106.094094

    Article  ADS  Google Scholar 

  13. W. Liebermeister, E. Klipp, Theor. Biol. Med. Model. 3, 41 (2006). https://doi.org/10.1186/1742-4682-3-41

    Article  Google Scholar 

  14. P.J. Gawthrop, E.J. Crampin, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 470(2171), 20140459 (2014). https://doi.org/10.1098/rspa.2014.0459

  15. J.C. Mason, M.W. Covert, J. Theor. Biol. 461, 145 (2019). https://doi.org/10.1016/j.jtbi.2018.10.041

    Article  ADS  Google Scholar 

  16. K.C. Soh, V. Hatzimanikatis, Curr. Opin. Microbiol. 13(3), 350 (2010). https://doi.org/10.1016/j.mib.2010.03.001

    Article  Google Scholar 

  17. A. Flamholz, E. Noor, A. Bar-Even, R. Milo, Nucleic Acids Res. 40(D1), D770 (2012). https://doi.org/10.1093/nar/gkr874

    Article  Google Scholar 

  18. P.J. Gawthrop, M. Pan, E.J. Crampin, J. R. Soc. Interface (2021) (in press)

  19. P. Saa, L.K. Nielsen, PLoS Comput. Biol. 11(4), e1004195 (2015). https://doi.org/10.1371/journal.pcbi.1004195

    Article  ADS  Google Scholar 

  20. J. Keener, J. Sneyd, Mathematical Physiology (Springer, New York, 2009). http://link.springer.com/10.1007/978-0-387-75847-3

  21. P.J. Gawthrop, J. Cursons, E.J. Crampin, Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2184), 20150642 (2015). https://doi.org/10.1098/rspa.2015.0642

  22. P. Gawthrop, G. Bevan, IEEE Control Syst. Mag. 27(2), 24 (2007). https://doi.org/10.1109/MCS.2007.338279

    Article  MathSciNet  Google Scholar 

  23. D.C. Karnopp, D.L. Margolis, R.C. Rosenberg, System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems, 5th edn. (Wiley, Hoboken, 2012). https://doi.org/10.1002/9781118152812

  24. M. Pan, P.J. Gawthrop, K. Tran, J. Cursons, E.J. Crampin, J. Theor. Biol. 481, 10 (2019). https://doi.org/10.1016/j.jtbi.2018.09.034

    Article  ADS  Google Scholar 

  25. F. Perez, B.E. Granger, Comput. Sci. Eng. 9(3), 21 (2007). https://doi.org/10.1109/MCSE.2007.53

    Article  Google Scholar 

  26. P.J. Gawthrop, L.P.S. Smith, Metamodelling: Bond Graphs and Dynamic Systems (Prentice Hall, Hemel Hempstead, 1996)

    Google Scholar 

  27. P.J. Gawthrop, in Bond Graphs for Modelling, Control and Fault Diagnosis of Engineering Systems, ed. by W. Borutzky (Springer International Publishing, Berlin, 2017), pp. 587–623. https://doi.org/10.1007/978-3-319-47434-2_16

  28. A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, ACM Trans. Math. Softw. 31(3), 363 (2005). https://doi.org/10.1145/1089014.1089020

    Article  Google Scholar 

  29. A. Mallavarapu, M. Thomson, B. Ullian, J. Gunawardena, J. R. Soc. Interface 6(32), 257 (2008). https://doi.org/10.1098/rsif.2008.0205

    Article  Google Scholar 

  30. M. Thomson, J. Gunawardena, Nature 460, 274 (2009). https://doi.org/10.1038/nature08102

    Article  ADS  Google Scholar 

  31. T.L. Hill, Free Energy Transduction and Biochemical Cycle Kinetics (Springer, New York, 1989). https://doi.org/10.1007/978-1-4612-3558-3

  32. N. Smith, E. Crampin, Prog. Biophys. Mol. Biol. 85(2–3), 387 (2004)

    Article  Google Scholar 

  33. M. Polettini, M. Esposito, J. Chem. Phys. 141(2), 024117 (2014). https://doi.org/10.1063/1.4886396

    Article  ADS  Google Scholar 

  34. P.J. Gawthrop, I. Siekmann, T. Kameneva, S. Saha, M.R. Ibbotson, E.J. Crampin, IET Syst. Biol. 11(5), 127 (2017). https://doi.org/10.1049/iet-syb.2017.0006

    Article  Google Scholar 

  35. M. Pan, P.J. Gawthrop, K. Tran, J. Cursons, E.J. Crampin, Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2214), 20180106 (2018). https://doi.org/10.1098/rspa.2018.0106

  36. P.J. Gawthrop, M. Pan, Bioelectricity (2020). https://doi.org/10.1089/bioe.2020.0042

    Article  Google Scholar 

  37. D. Del Vecchio, Annu. Rev. Control. 37(2), 333 (2013). https://doi.org/10.1016/j.arcontrol.2013.09.011

    Article  Google Scholar 

  38. M.L. Neal, M.T. Cooling, L.P. Smith, C.T. Thompson, H.M. Sauro, B.E. Carlson, D.L. Cook, J.H. Gennari, PLoS Comput. Biol. 10(10), e1003849 (2014). https://doi.org/10.1371/journal.pcbi.1003849

    Article  ADS  Google Scholar 

  39. M.L. Neal, B.E. Carlson, C.T. Thompson, R.C. James, K.G. Kim, K. Tran, E.J. Crampin, D.L. Cook, J.H. Gennari, PLoS ONE 10(12), e0145621 (2015). https://doi.org/10.1371/journal.pone.0145621

    Article  Google Scholar 

  40. P.J. Gawthrop, IEEE Trans. Nanobiosci. 16(3), 177 (2017). https://doi.org/10.1109/TNB.2017.2674683

    Article  Google Scholar 

  41. N. Shahidi, M. Pan, S. Safaei, K. Tran, E.J. Crampin, D.P. Nickerson, bioRxiv p. 2021.03.09.434672 (2021). https://doi.org/10.1101/2021.03.09.434672

  42. K. Choi, J.K. Medley, M. König, K. Stocking, L. Smith, S. Gu, H.M. Sauro, Biosystems 171, 74 (2018). https://doi.org/10.1016/j.biosystems.2018.07.006

    Article  Google Scholar 

  43. C.F. Lopez, J.L. Muhlich, J.A. Bachman, P.K. Sorger, Mol. Syst. Biol. 9(1), 646 (2013). https://doi.org/10.1038/msb.2013.1

    Article  Google Scholar 

  44. L. Gerosa, C. Chidley, F. Fröhlich, G. Sanchez, S.K. Lim, J. Muhlich, J.Y. Chen, S. Vallabhaneni, G.J. Baker, D. Schapiro, M.I. Atanasova, L.A. Chylek, T. Shi, L. Yi, C.D. Nicora, A. Claas, T.S.C. Ng, R.H. Kohler, D.A. Lauffenburger, R. Weissleder, M.A. Miller, W.J. Qian, H.S. Wiley, P.K. Sorger, Cell Syst. 11(5), 478 (2020). https://doi.org/10.1016/j.cels.2020.10.002

    Article  Google Scholar 

  45. L.A. Chylek, L.A. Harris, C.S. Tung, J.R. Faeder, C.F. Lopez, W.S. Hlavacek, WIREs Syst. Biol. Med. 6(1), 13 (2014). https://doi.org/10.1002/wsbm.1245

  46. J.F. Ollivier, V. Shahrezaei, P.S. Swain, PLoS Comput. Biol. 6(11), e1000975 (2010). https://doi.org/10.1371/journal.pcbi.1000975

    Article  ADS  Google Scholar 

  47. J.A.P. Sekar, J.S. Hogg, J.R. Faeder, in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). pp. 15–18. https://doi.org/10.1109/BIBM.2016.7822739

  48. P.J. Gawthrop, P. Cudmore, E.J. Crampin, J. Theor. Biol. 493, 110223 (2020). https://doi.org/10.1016/j.jtbi.2020.110223

    Article  Google Scholar 

  49. V. Díaz-Zuccarini, C. Pichardo-Almarza, Interface Focus 1(3), 426 (2011). https://doi.org/10.1098/rsfs.2010.0038

    Article  Google Scholar 

  50. B. de Bono, S. Safaei, P. Grenon, P. Hunter, Interface Focus 8(1), 20170026 (2018). https://doi.org/10.1098/rsfs.2017.0026

    Article  Google Scholar 

  51. E.J. Crampin, M. Pan, K. Tran, S. Ghosh, V. Rajagopal, in Modeling and Simulating Cardiac Electrical Activity, ed. by T. Krogh-Madsen, D.J. Christini, 2053–2563 (IOP Publishing, 2020), pp. 6-1 to 6-45. https://doi.org/10.1088/978-0-7503-2064-1ch6

  52. K. Tran, D.S. Loiselle, E.J. Crampin, Physiol. Rep. 3(7), e12464 (2015). https://doi.org/10.14814/phy2.12464

  53. A.C. Daly, M. Clerx, K.A. Beattie, J. Cooper, D.J. Gavaghan, G.R. Mirams, Prog. Biophys. Mol. Biol. 139, 3 (2018). https://doi.org/10.1016/j.pbiomolbio.2018.05.011

    Article  Google Scholar 

  54. M. Pan, P.J. Gawthrop, J. Cursons, K. Tran, E.J. Crampin, Physiome 7 (2020). https://doi.org/10.36903/physiome.12871070

  55. P.J. Gawthrop, M. Pan, E.J. Crampin, bioRxiv p. 2021.03.24.436792 (2021). https://doi.org/10.1101/2021.03.24.436792

  56. P. Virtanen, R. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S.J. van der Walt, M. Brett, J. Wilson, K.J. Millman, N. Mayorov, A.R.J. Nelson, E. Jones, R. Kern, E. Larson, C.J. Carey, İ Polat, Y. Feng, E.W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E.A. Quintero, C.R. Harris, A.M. Archibald, A.H. Ribeiro, F. Pedregosa, P. van Mulbregt, Nat. Methods 17, 261 (2020). https://doi.org/10.1038/s41592-019-0686-2

    Article  Google Scholar 

  57. R.E. Perez, P.W. Jansen, J.R.R.A. Martins, Struct. Multidiscip. Optim. 45(1), 101 (2012). https://doi.org/10.1007/s00158-011-0666-3

    Article  MathSciNet  Google Scholar 

  58. D.G. Hurley, D.M. Budden, E.J. Crampin, Brief. Bioinform. 16(5), 901 (2015)

    Article  Google Scholar 

  59. P. Cudmore, C.A. Holmes, Chaos Interdiscip. J. Nonlinear Sci. 25(2), 023110 (2015). https://doi.org/10.1063/1.4908604

Download references

Acknowledgements

This research was in part conducted and funded by the Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology (project number CE140100036). PJG would like to thank the Faculty of Engineering and Information Technology, University of Melbourne, for its support via a Professorial Fellowship. The authors would like to thank the reviewers for their constructive feedback, which have helped to improve both the paper and the software.

Author information

Authors and Affiliations

Authors

Contributions

PC designed and wrote the code for BondGraphTools, including developing the methodology for symbolic reduction. MP applied the methodology to biochemical systems. PC and MP wrote the manuscript with support from PJG and EJC. All authors revised and edited the manuscript.

Corresponding author

Correspondence to Michael Pan.

Appendix A: Parameters for multisite phosphorylation

Appendix A: Parameters for multisite phosphorylation

When only kinetic data are available, the energetic parameters cannot be determined uniquely due to the relative nature of chemical potential and the absence of reference values. This parameter undeterminacy has been discussed in previous papers, where sets in parameter space with equivalent kinetic behaviours were defined [15, 21, 24]. However, for this model, we will avoid the issue of parameter uncertainty for simplicity and refer the reader to the above articles for further information.

We make the following assumptions on the energetic parameters:

  • We set \(\mu _\text {ATP} = 50\ {\hbox {kJ}/\hbox {mol}}\), \(\mu _\text {ADP} = 0\ {\hbox {kJ}/\hbox {mol}}\) and \(\mu _\text {Pi} = 0\ {\hbox {kJ}/\hbox {mol}}\) since the free energy of ATP hydrolysis \(\varDelta G = \mu _\text {ADP}+\mu _\text {Pi}-\mu _\text {ATP}\) typically varies between \(-50\) kJ/mol and \(-60\) kJ/mol in physiological contexts.

  • We set \(K_E = K_F = K_{S_0} = 1\ {\hbox {nM}^{-1}}\) (corresponding to a free energy of formation of zero at a standard concentration of 1 nM).

  • We assume that the energetics of phosphorylation are identical for each site, i.e. \(K_{S_{i+1}} = \gamma K_{S_{i}}\). Hence, in conjunction with the above assumption, \(K_{S_i} = \gamma ^i\). For reasons that we justify later, we have chosen \(\gamma = 3.47 \times 10^4\).

Note that implicit in the above assumptions are that ADP, Pi, \(\mathrm {S}_0\), E and F are the “reference species” whose chemical potentials are used to define the potentials of the rest of the species. It is relatively straightforward to adapt the assumptions when the more standard chemical free energies of formation are used, in which the chemical potentials of each species are referenced to their constituent elements in their standard states.

The rest of the parameters can be determined from the kinetic parameters in Thomson and Gunawardena [30]. Omitting chemostats, each of the enzyme-catalysed reactions follows the generic structure

$$\begin{aligned} \mathrm {S}_u + \mathrm {X} \mathrel {\mathop {\rightleftharpoons }^{a}_{b}} \mathrm {XS}_u \mathrel {\mathop {\rightleftharpoons }^{c}_{d}} \mathrm {S}_v + \mathrm {X} \end{aligned}$$
(A.1)

where \(\mathrm {S}_u\) and \(\mathrm {S}_v\) are the input substrates, \(\mathrm {X = E} \text { or } \mathrm {F}\) and \(\mathrm {XS}_u\) is the complex. The kinetic constants of Thomson and Gunawardena are given in Table 3. Since the reaction scheme does not explicitly account for chemostats, they have been absorbed into the kinetic parameters.

We need to determine the rate constants of both reactions and the species constant of \(\mathrm {XS}_u\). These can be determined using the following equations, which are derived by writing kinetic parameters in terms of the energetic parameters:

$$\begin{aligned} r_a&= a/\left( K_{S_u} K_E e^{A_\text {cs}^f/RT}\right) \end{aligned}$$
(A.2)
$$\begin{aligned} K_{\mathrm {XS}_u}&= b/r_a \end{aligned}$$
(A.3)
$$\begin{aligned} r_b&= c/K_{\mathrm {XS}_u} \end{aligned}$$
(A.4)

where \(A_\text {cs}^f\) is the potential of the reactant chemostat (if present). Similarly, we can define \(A_\text {cs}^r\) as the potential of the product chemostat. Thus, for kinases (E), \(A_\text {cs}^f = \mu _\text {ATP}\) and \(A_\text {cs}^r = \mu _\text {ADP}\). For phosphatases (F), \(A_\text {cs}^f = 0\) and \(A_\text {cs}^r = \mu _\text {Pi}\).

The remaining kinetic constant \(d = r_b S_v A_\text {cs}^r\) is assumed to be zero in Thomson and Gunawardena, but this is impossible in a real system, which requires all reactions to be reversible. Thus, we choose the final parameter \(\gamma \) to minimise the magnitude of these rate constants, or more precisely, we minimise their squared sum

$$\begin{aligned} J = \sum _{i=1}^4 \left( d_i^E\right) ^2 + \sum _{i=1}^4 \left( d_i^F\right) ^2 \end{aligned}$$
(A.5)

where \(d_i^X\) is the parameter d for the ith kinase (\(\mathrm {X=E}\)) or phosphatase (\(\mathrm {X=F}\)) reaction. A value of \({\gamma = 3.47 \times 10^4}\) will minimise J. The full list of energetic parameters is given in Tables 4 and 5.

Table 3 Kinetic parameters used in the Thomson and Gunawardena model [30]
Table 4 Species parameters K for the four-site phosphorylation example
Table 5 Reaction parameters r for the four-site phosphorylation example

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cudmore, P., Pan, M., Gawthrop, P.J. et al. Analysing and simulating energy-based models in biology using BondGraphTools. Eur. Phys. J. E 44, 148 (2021). https://doi.org/10.1140/epje/s10189-021-00152-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00152-4

Navigation