Skip to main content
Log in

Testing mean-field theory for jamming of non-spherical particles: contact number, gap distribution, and vibrational density of states

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We perform numerical simulations of the jamming transition of non-spherical particles in two dimensions. In particular, we systematically investigate how the physical quantities at the jamming transition point behave when the shapes of the particle deviate slightly from the perfect disks. For efficient numerical simulation, we first derive an analytical expression of the gap function, using the perturbation theory around the reference disks. Starting from disks, we observe the effects of the deformation of the shapes of particles by the n-th-order term of the Fourier series \(\sin (n\theta )\). We show that the several physical quantities, such as the number of contacts, gap distribution, and characteristic frequencies of the vibrational density of states, show the power-law behaviors with respect to the linear deviation from the reference disks. The power-law behaviors do not depend on n and are fully consistent with the mean-field theory of the jamming of non-spherical particles. This result suggests that the mean-field theory holds very generally for nearly spherical particles.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. van Hecke, J. Phys.: Condens. Matter 22, 033101 (2009)

    Google Scholar 

  2. A.J. Liu, S.R. Nagel, Annu. Rev. Condens. Matter Phys. 1, 347 (2010)

    Article  ADS  Google Scholar 

  3. C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Phys. Rev. E 68, 011306 (2003)

  4. H. Nishimori and G. Ortiz, Elements of phase transitions and critical phenomena (OUP Oxford, 2010)

  5. D. Vågberg, D. Valdez-Balderas, M. Moore, P. Olsson, S. Teitel, Phys. Rev. E 83, 030303 (2011)

    Article  ADS  Google Scholar 

  6. P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, F. Zamponi, Nat. Commun. 5, 1 (2014)

    Article  Google Scholar 

  7. H. Ikeda, Phys. Rev. Lett. 125, 038001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Parisi, P. Urbani, F. Zamponi, Theory of simple glasses: exact solutions in infinite dimensions (Cambridge University Press, 2020)

  9. M. Mézard, G. Parisi, M. Virasoro, Spin glass theory and beyond: An Introduction to the Replica Method and Its Applications, Vol. 9 (World Scientific Publishing Company, 1987)

  10. H. Nishimori, Statistical physics of spin glasses and information processing: an introduction, 111 (Clarendon Press, 2001)

  11. M. Wyart, L.E. Silbert, S.R. Nagel, T.A. Witten, Phys. Rev. E 72, 051306 (2005)

    Article  ADS  Google Scholar 

  12. L. Yan, E. DeGiuli, M. Wyart, EPL (Europhys. Lett.) 114, 26003 (2016)

    Article  ADS  Google Scholar 

  13. E. DeGiuli, A. Laversanne-Finot, G. Düring, E. Lerner, M. Wyart, Soft Matter 10, 5628 (2014)

    Article  ADS  Google Scholar 

  14. E. DeGiuli, E. Lerner, C. Brito, M. Wyart, Proc. Natl. Acad. Sci. 111, 17054 (2014)

    Article  ADS  Google Scholar 

  15. Y. Beltukov, JETP Lett. 101, 345 (2015)

    Article  ADS  Google Scholar 

  16. H. Ikeda and M. Shimada, arXiv preprint arXiv:2009.12060 (2020)

  17. C. Brito, H. Ikeda, P. Urbani, M. Wyart, F. Zamponi, Proc. Natl. Acad. Sci. 115, 11736 (2018)

    Article  ADS  Google Scholar 

  18. H. Ikeda, P. Urbani, F. Zamponi, J. Phys. A: Math. Theor. 52, 344001 (2019)

    Article  Google Scholar 

  19. G. Lu, J. Third, C. Müller, Chem. Eng. Sci. 127, 425 (2015)

    Article  Google Scholar 

  20. H. Ikeda, C. Brito, M. Wyart, J. Stat. Mech: Theory Exp. 2020, 033302 (2020)

    Article  Google Scholar 

  21. H. Ikeda, C. Brito, M. Wyart, F. Zamponi, Phys. Rev. Lett. 124, 208001 (2020)

    Article  ADS  Google Scholar 

  22. C.P. Goodrich, S. Dagois-Bohy, B.P. Tighe, M. van Hecke, A.J. Liu, S.R. Nagel, Phys. Rev. E 90, 022130 (2014)

    Article  ADS  Google Scholar 

  23. C.P. Goodrich, A.J. Liu, S.R. Nagel, Phys. Rev. Lett. 109, 095704 (2012)

  24. J. Bernal, J. Mason, Nature 188, 910 (1960)

    Article  ADS  Google Scholar 

  25. A. Donev, S. Torquato, F.H. Stillinger, Phys. Rev. E 71, 011105 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Charbonneau, E.I. Corwin, G. Parisi, F. Zamponi, Phys. Rev. Lett. 109, 205501 (2012)

    Article  ADS  Google Scholar 

  27. P. Charbonneau, E. Corwin, C. Dennis, R. D. H. Rojas, H. Ikeda, G. Parisi, F. Ricci-Tersenghi, arXiv preprint arXiv:2011.10899 (2020)

  28. S. Franz, G. Parisi, M. Sevelev, P. Urbani, and F. Zamponi, (2017)

  29. C.F. Schreck, N. Xu, C.S. O’Hern, Soft Matter 6, 2960 (2010)

  30. K. Shiraishi, H. Mizuno, A. Ikeda, Phys. Rev. E 100, 012606 (2019)

    Article  ADS  Google Scholar 

  31. K. Shiraishi, H. Mizuno, A. Ikeda, arXiv preprint arXiv:2005.02598 (2020)

  32. A. Donev, I. Cisse, D. Sachs, E.A. Variano, F.H. Stillinger, R. Connelly, S. Torquato, P.M. Chaikin, Science 303, 990 (2004)

    Article  ADS  Google Scholar 

  33. A. Donev, R. Connelly, F.H. Stillinger, S. Torquato, Phys. Rev. E 75, 051304 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Z. Zeravcic, N. Xu, A. Liu, S. Nagel, W. van Saarloos, EPL (Europhys. Lett.) 87, 26001 (2009)

    Article  ADS  Google Scholar 

  35. M. Mailman, C.F. Schreck, C.S. O’Hern, B. Chakraborty, Phys. Rev. Lett. 102, 255501 (2009)

  36. C.F. Schreck, M. Mailman, B. Chakraborty, C.S. O’Hern, Phys. Rev. E 85, 061305 (2012)

  37. S. Williams, A. Philipse, Phys. Rev. E 67, 051301 (2003)

    Article  ADS  Google Scholar 

  38. J. Blouwolff, S. Fraden, EPL (Europhys. Lett.) 76, 1095 (2006)

    Article  ADS  Google Scholar 

  39. E. Azéma, F. Radjaï, Phys. Rev. E 81, 051304 (2010)

    Article  ADS  Google Scholar 

  40. T. Marschall, S. Teitel, Phys. Rev. E 97, 012905 (2018)

    Article  ADS  Google Scholar 

  41. Y. Jiao, F.H. Stillinger, S. Torquato, Phys. Rev. E 81, 041304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  42. G.W. Delaney, P.W. Cleary, EPL (Europhys. Lett.) 89, 34002 (2010)

    Article  ADS  Google Scholar 

  43. K. VanderWerf, W. Jin, M.D. Shattuck, C.S. O’Hern, Phys. Rev. E 97, 012909 (2018)

  44. M. Tarama, A.M. Menzel, B. ten Hagen, R. Wittkowski, T. Ohta, H. Löwen, J. Chem. Phys. 139, 104906 (2013)

    Article  ADS  Google Scholar 

  45. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97, 170201 (2006)

    Article  ADS  Google Scholar 

  46. M. Shimada, H. Mizuno, M. Wyart, A. Ikeda, Phys. Rev. E 98, 060901 (2018)

    Article  ADS  Google Scholar 

  47. M. Wyart, arXiv preprint cond-mat/0512155 (2005)

Download references

Acknowledgements

This project has received funding from the JSPS KAKENHI Grant Number JP20J00289.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harukuni Ikeda.

Appendices

Appendix A: Isostaticity of particles consisting of spherical particles

To keep the generality, we consider N particle system connected by M bonds. For instance, N/2 dimers can be considered as N spherical particles with \(M=N/2\) bonds. We consider the harmonic potential:

$$\begin{aligned} V_N = \sum _{i<j}^{1,N}\frac{h_{ij}^2}{2}\Theta (-h_{ij}) + k\sum _{a=1}^M \frac{t_{i_aj_a}^2}{2}, \end{aligned}$$
(A1)

where

$$\begin{aligned}&h_{ij} = \left| \varvec{r}_i-\varvec{r}_j\right| -R_i-R_j,\nonumber \\&t_{i_aj_a} = \left| \varvec{r}_{i_a}-\varvec{r}_{j_a}\right| - l_{i_a j_a}. \end{aligned}$$
(A2)

\(\varvec{r}_i=\{x_1^i, \dots , x_d^i\}\) denotes the position, and \(R_i\) denotes the diameter of the i-th particle, and \(l_{i_aj_a}\) denotes the length of the a-th bond connecting particles \(i_a\) and \(j_a\).

Here, we show that the system is isostatic at \(\varphi _J\) by using the same argument for frictionless spherical particles [11, 47].

The number of degrees of freedom of the system is

$$\begin{aligned} N_f = Nd. \end{aligned}$$
(A3)

At the jamming transition point, we have

$$\begin{aligned}&\left| \varvec{r}_{i_\mu }-\varvec{r}_{j_\mu }\right| = R_{i_\mu }+R_{i_\mu },&\mu = 1,\dots , N_c,\nonumber \\&\left| \varvec{r}_{i_a}-\varvec{r}_{j_a}\right| = l_{i_aj_a},&a = 1,\dots , M. \end{aligned}$$
(A4)

where \(N_c\) denotes the number of contacts, \(i_\mu \) and \(j_\mu \) denote particles of the \(\mu \)-th contact. One can find \(\{\varvec{r}_i\}_{i=1,\dots , N}\) satisfying the above equation if

$$\begin{aligned} Nd \ge N_{\mathrm{const}}, \end{aligned}$$
(A5)

where

$$\begin{aligned} N_{\mathrm{const}} = N_c +M, \end{aligned}$$
(A6)

denotes the number of constraints at the jamming transition point. On the contrary, the force balance requires

$$\begin{aligned} \frac{\partial V_N}{\partial \varvec{r}_i} = \sum _{j\ne i}\Theta (-h_{ij})h_{ij}\varvec{n}_{ij} + k\sum _{a=1}^M t_{ij_a}\varvec{n}_{ij_a} = 0, \end{aligned}$$
(A7)

where \(\varvec{n}_{ij}\) denotes the normal vector connecting particles i and j. This can be regarded as Nd linear equations for \(\{h_{i_\mu j_\mu }\}_{\mu =1,\dots , N_c}\) and \(\{t_{i_aj_a}\}_{a=1,\dots , M}\). One can find a solution if

$$\begin{aligned} N_c+M \ge Nd. \end{aligned}$$
(A8)

From Eqs. (A5) and (A8), we get

$$\begin{aligned} N_{\mathrm{const}} = N_f \leftrightarrow N_c + M = Nd, \end{aligned}$$
(A9)

meaning that the system is isostaticity at the jamming transition point. For N/2 dimers, the total number of contacts is written as \(N_c = (N/2)z_J/2\), leading to

$$\begin{aligned} z_J = 4d-2, \end{aligned}$$
(A10)

which is consistent with the numerical results in \(d=2\) [29, 30] and \(d=3\) [31].

Appendix B: Derivation of Eq. (34)

Fig. 13
figure 13

Schematic picture of two non-spherical particles. Red solid lines denote particles shape, and blue dashed lines denote reference disks

We write the gap function \(h_{ij}\) as

$$\begin{aligned} h_{ij}&= \left| \varvec{u}_i-\varvec{u}_j\right| , \end{aligned}$$
(B1)

where \(\varvec{u}_i\) and \(\varvec{u}_j\) are points on the surfaces of particles i and j that minimize \(h_{ij}\), see Fig. 13. We expand \(\varvec{u}_i\) and \(\varvec{u}_j\) from those of the reference disks as

$$\begin{aligned}&\varvec{u}_i = \varvec{r}_i + R_i(\varvec{n}_i)\varvec{n}_i = \varvec{u}_i^0 + \delta \varvec{u}_i,\nonumber \\&\varvec{u}_j = \varvec{r}_j + R_j(\varvec{n}_j)\varvec{n}_j = \varvec{u}_j^0 + \delta \varvec{u}_j, \end{aligned}$$
(B2)

where

$$\begin{aligned}&\varvec{u}_i^0 = \varvec{r}_i + R_i^0\varvec{n}_i^0,\ \varvec{u}_j^0 = \varvec{r}_j + R_j^0\varvec{n}_j^0,\nonumber \\&\delta \varvec{u}_i = R_i(\varvec{n}_i)\varvec{n}_i - R_i^0\varvec{n}_{i}^0,\delta \varvec{u}_j = R_j(\varvec{n}_j)\varvec{n}_j - R_j^0\varvec{n}_{j}^0,\nonumber \\&\varvec{n}_{i} = \frac{\varvec{r}_i-\varvec{u}_i}{\left| \varvec{r}_i-\varvec{u}_i\right| },\varvec{n}_{j} = \frac{\varvec{r}_j-\varvec{u}_j}{\left| \varvec{r}_j-\varvec{u}_j\right| },\nonumber \\&\varvec{n}_{i}^0 = \frac{\varvec{r}_i-\varvec{r}_j}{\left| \varvec{r}_i-\varvec{r}_j\right| }, \varvec{n}_{j}^0 = -\varvec{n}_i^0, \end{aligned}$$
(B3)

see Fig. 13. \(R_i(\varvec{n}_i)\) denotes the radius of particle i along the direction \(\varvec{n}_i\). In particular,

$$\begin{aligned} R_i(\varvec{n}_i^0) = R_i^0\left[ 1 + \Delta F(\theta _i-\theta _{ij})\right] , \end{aligned}$$
(B4)

where \(\theta _i\) denotes the direction of particle i, \(\theta _{ij}\) denotes the relative angle between particles i and j, see Fig. 3. For \(\Delta \ll 1\), we can expand \(h_{ij}\) w.r.t \(\Delta \) as

$$\begin{aligned} h_{ij}&= \left| \varvec{u}_i-\varvec{u}_j\right| = h_{ij}^0 + \varvec{n}_i^0\cdot \left( \delta \varvec{u}_i - \delta \varvec{u}_j\right) + O(\delta \varvec{u}_i^2,\delta \varvec{u}_j^2)\nonumber \\&= h_{ij}^0 + R_i^0-R_i(\varvec{n}_i) + R_j^0-R_j(\varvec{n}_j) + O(\Delta ^2)\nonumber \\&= h_{ij}^0 - \Delta \left[ R_i^0 F(\theta _i-\theta _{ij}) + R_j^0 F(\theta _j-\theta _{ji})\right] + O(\Delta ^2), \end{aligned}$$
(B5)

where we used \(\varvec{n}_i^0\cdot \varvec{n}_i = 1 + O(\Delta ^2)\), and \(R_i(\varvec{n}_i) = R_i(\varvec{n}_i^0) + O(\Delta ^2)\). \(h_{ij}^0\) denotes the gap function of the reference disks:

$$\begin{aligned} h_{ij}^0 = \left| \varvec{u}_i^0-\varvec{u}_j^0\right| = \left| \varvec{r}_i-\varvec{r}_j\right| -R_i^0-R_j^0. \end{aligned}$$
(B6)

Appendix C: Sorted eigenvalues

Fig. 14
figure 14

Sorted eigenvalues of the Hessian matrix \(H_{X_iY_j}\). We used the same parameters as in Fig. 11. \(N_\lambda \) denotes the number of the eigenvalues. The separate bands are visible at around \(i/N_\lambda \sim 0.3\)

In Fig. 14, we show the (sorted) eigenvalues \(\lambda _i\) of the Hessian matrix Eq. (45). We used the same parameters n and \(\Delta \) of those of Fig. 11. Here, we only show the data for \(\lambda _i>10^{-12}\), which is large enough to remove the zero modes. As in the case of Fig. 11, the separate band arises at around \(i/N_\lambda \sim 0.3\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, H. Testing mean-field theory for jamming of non-spherical particles: contact number, gap distribution, and vibrational density of states. Eur. Phys. J. E 44, 120 (2021). https://doi.org/10.1140/epje/s10189-021-00116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00116-8

Navigation