Skip to main content
Log in

Interaction of double-stranded polynucleotide poly(A:U) with graphene/graphene oxide

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Hybrids formed by DNA/RNA and graphene family nanomaterials are considered as potentially useful multifunctional agents in biosensing and nanomedicine. In this work, we study the noncovalent interaction between double-stranded (ds) RNA, polyadenylic:polyuridylic acids (poly(A:U)) and graphene oxide/graphene (GO/Gr) using UV absorption spectroscopy and molecular dynamics (MD) simulations. RNA melting showed that relatively long ds-RNA is adsorbed onto GO (at an ionic strength of \(\sim 0.1~\hbox {M}\)) at that a large fraction of RNA maintains the duplex structure. It was revealed that this fraction decreases over long time (during a few days), indicating a slow adsorption process of the long polymer. MD simulations showed that the adsorption of duplex (rA)\(_{15}\): (rU)\(_{15}\) or (rA)\(_{30}\): (rU)\(_{30}\) on graphene starts with the interaction between \(\pi \)-systems of graphene and base pairs located at a duplex tail. In contrast to relatively long duplex (rA)\(_{30}\): (rU)\(_{30}\) which keeps parallel arrangement along the graphene surface, the shorter one ((rA)\(_{15}\): (rU)\(_{15}\)) always adopts a perpendicular orientation relative to graphene even in case of the initial parallel orientation. It was found out that (rA)\(_{30}\): (rU)\(_{30}\) forms the stable hybrid with graphene keeping essential fraction of the duplex, while (rA)\(_{15}\): (rU)\(_{15}\) demonstrates the duplex unzipping into two single strands with time. The interaction energies between adenine/uracil stacked with graphene as well between nucleotides in water environment were determined.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data used to support the findings of this study are available from the corresponding author upon request.]

References

  1. G. Reina, J.M. Gonzalez-Domınguez, A. Criado, E. Vazquez, A. Bianco, M. Prato, S. Syama, P.V. Mohanan, Nano-Micro Lett. 11, 1 (2019). https://doi.org/10.1007/s40820-019-0237-5

    Google Scholar 

  2. M. Liu, W. Zhang, D. Chang, Q. Zhang, J.D. Brennan, Y. Li, Trends Anal. Chem. 74, 120 (2015). https://doi.org/10.1016/j.trac.2015.03.027

    Google Scholar 

  3. L. Tang, Y. Wang, J. Li, The graphene/nucleic acid nanobiointerface. Chem. Soc. Rev. 44, 6954 (2015). https://doi.org/10.1039/C4CS00519H

    Google Scholar 

  4. M.V. Karachevtsev, S.G. Stepanian, A.Y. Ivanov, V.S. Leontiev, V.A. Valeev, O.S. Lytvyn, L. Adamowicz, V.A. Karachevtsev, J. Phys. Chem. C 121, 18221 (2017). https://doi.org/10.1021/acs.jpcc.7b04806

    Google Scholar 

  5. B. Liu, S. Salgado, V. Maheshwari, J. Liu, Curr. Opin. Colloid Interface Sci. 26, 41 (2016). https://doi.org/10.1016/j.cocis.2016.09.001

    Google Scholar 

  6. L. Tang, H. Chang, Y. Liu, J. Li, Adv. Funct. Mater. 22, 3083 (2012). https://doi.org/10.1002/adfm.201102892

    Google Scholar 

  7. M. Wu, R. Kempaiah, P.-J.J. Huang, V. Maheshwari, J. Liu, Langmuir 27, 2731 (2011). https://doi.org/10.1021/la1037926

    Google Scholar 

  8. F. Xu, H. Shi, X. He, K. Wang, X. Ye, L. Yan, S. Wei, Analyst 137, 3989 (2012). https://doi.org/10.1039/C2AN35585J

    Google Scholar 

  9. M. Liu, H. Zhao, S. Chen, H. Yu, X. Quan, Chem. Commun. 48, 564 (2012). https://doi.org/10.1039/C1CC16429E

    Google Scholar 

  10. C.-H. Lu, H.-H. Yang, C.-L. Zhu, X. Chen, G.-N. Chen, Angew. Chem. Int. Ed. 48, 4785 (2009). https://doi.org/10.1002/anie.200901479

    Google Scholar 

  11. B. Liu, Z. Sun, X. Zhang, J. Liu, Anal. Chem. 85, 7987 (2013). https://doi.org/10.1021/ac401845p

    Google Scholar 

  12. R. Kurapati, U.V. Reddy, A.M. Raichur, N. Suryaprekash, J. Chem. Sci. 128, 325 (2016). https://doi.org/10.1007/s12039-016-1043-y

    Google Scholar 

  13. S. Kundu, A. Pyne, R. Dutta, N. Sarkar, J. Phys. Chem. C 122, 6876 (2018). https://doi.org/10.1021/acs.jpcc.7b10752

    Google Scholar 

  14. G. Reina, N.D.Q. Chau, Y. Nishina, A. Bianco, Nanoscale 10, 5965 (2018). https://doi.org/10.1039/C8NR00333E

    Google Scholar 

  15. J. Zhang, S. Wu, L. Ma, P. Wu, J. Liu, Nano Res. 13, 455 (2020). https://doi.org/10.1007/s12274-020-2629-8

    Google Scholar 

  16. X. Zhao, J. Phys. Chem. C 115, 6181 (2011). https://doi.org/10.1021/jp110013r

    Google Scholar 

  17. H. Ren, C. Wang, J. Zhang, X. Zhou, D. Xu, J. Zheng, S. Guo, J. Zhang, ACS Nano 4, 7169 (2010). https://doi.org/10.1021/nn101696r

    Google Scholar 

  18. B. Zheng, C. Wang, C. Wu, X. Zhou, M. Lin, X. Wu, X. Xin, X. Chen, L. Xu, H. Liu, J. Zheng, J. Zhang, S. Guo, J. Phys. Chem. C 116, 15839 (2012). https://doi.org/10.1021/jp3050324

    Google Scholar 

  19. M. Santosh, S. Panigrahi, D. Bhattacharyya, A.K. Sood, P.K. Maiti, J. Chem. Phys. 136, 065106–1 (2012). https://doi.org/10.1063/1.3682780

    Google Scholar 

  20. S. Ghosh, R. Chakrabarti, J. Phys. Chem. B 120, 3642 (2016). https://doi.org/10.1021/acs.jpcb.6b02035

    Google Scholar 

  21. D. Yin, Y. Li, H. Lin, B. Guo, Y. Du, X. Li, H. Jia, X. Zhao, J. Tang, L. Zhang, Nanotechnology 24, 105102 (2013). https://doi.org/10.1088/0957-4484/24/10/105102

    Google Scholar 

  22. H.C. Foreman, G. Lalwani, J. Kalra, L.T. Krug, B. Sitharaman, J. Mater. Chem. B 5, 2347 (2017). https://doi.org/10.1039/C6TB03010F

    Google Scholar 

  23. L. Wang, L. Wang, D. Smith, S. Bot, L. Dellamary, A. Bloom, A. Bot, J. Clin. Invest. 110, 1175 (2002). https://doi.org/10.1172/JCI15536

    Google Scholar 

  24. A. Bot, D. Smith, B. Phillips, S. Bot, C. Bona, H. Zaghouani, J. Immunol. 176, 1363 (2006). https://doi.org/10.4049/jimmunol.176.3.1363

    Google Scholar 

  25. T. Sugiyama, K. Hoshino, M. Saito, T. Yano, I. Sasaki, C. Yamazaki, S. Akira, T. Kaisho, Int. Immunol. 20, 1 (2007). https://doi.org/10.1093/intimm/dxm112

    Google Scholar 

  26. R. Conforti, Y. Ma, Y. Morel, C. Paturel, M. Terme, S. Viaud, B. Ryffel, M. Ferrantini, R. Uppaluri, R. Schreiber, C. Combadière, N. Chaput, F. André, G. Kroemer, L. Zitvogel, Cancer Res. 70, 490 (2010). https://doi.org/10.1158/0008-5472.CAN-09-1890

    Google Scholar 

  27. A. Laplanche, L. Alzieu, T. Delozier, J. Berlie, C. Veyret, P. Fargeot, M. Luboinski, J. Lacour, Breast Cancer Res. Treat. 64, 189 (2000). https://doi.org/10.1023/A:1006498121628

    Google Scholar 

  28. S. Ghosh, R. Chakrabarti, J. Phys. Chem. C 120, 22681 (2016). https://doi.org/10.1021/acs.jpcc.6b06943

    Google Scholar 

  29. B. Janik, Physicochemical Characteristic of Oligonucleotides and Polynucleotides (IFI/Plenum Washington, London, New York, 1971)

    Google Scholar 

  30. M. Mohandoss, S.S. Gupta, A. Nelleri, T. Pradeep, S.M. Maliyekka, RSC Adv. 7, 957 (2017). https://doi.org/10.1039/C6RA24696F

    Google Scholar 

  31. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Google Scholar 

  32. R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Science 343, 752 (2014). https://doi.org/10.1126/science.1245711

    Google Scholar 

  33. C.R. Cantor, P.R. Schimmel, Biophysical Chemistry Part II (W.H. Freeman and Company, San Francisco, 1980)

    Google Scholar 

  34. I. Tinoco Jr., J. Am. Chem. Soc. 82, 4785 (1960). https://doi.org/10.1021/ja01503a007

    Google Scholar 

  35. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, Ch. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005). https://doi.org/10.1002/jcc.20289

    Google Scholar 

  36. N. Foloppe, A.D. MacKerell Jr., J. Comput. Chem. 21, 86 (2000). https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<3c86::AID-JCC2>3e3.0.CO;2-G

  37. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995). https://doi.org/10.1063/1.470117

    Google Scholar 

  38. W. Humphrey, A. Dalke, K. Schulten, J. Molec, Graphics 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Google Scholar 

  39. C.L. Stevens, G. Felsenfeld, Biopolymers 2, 293 (1964). https://doi.org/10.1002/bip.1964.360020402

    Google Scholar 

  40. V.A. Karachevtsev, S.G. Stepanian, A.Y. Glamazda, M.V. Karachevtsev, V.V. Eremenko, O.S. Lytvyn, L. Adamowicz, J. Phys. Chem. C 115, 21072 (2011). https://doi.org/10.1021/jp207916d

    Google Scholar 

  41. A. Kabir, G.S. Kumar, J. Phys. Chem. B 118, 11050 (2014). https://doi.org/10.1021/jp5035294

    Google Scholar 

Download references

Acknowledgements

This work has been supported by funding from the National Academy of Sciences of Ukraine under Grant 0120U100157. The authors acknowledge the Computational Center at B. I. Verkin Institute for Low Temperature Physics and Engineering for providing computer time.

Author information

Authors and Affiliations

Authors

Contributions

VAK conceived and designed the project. MVK took part in the project designing, performed the MD simulations and data analysis. VAV carried out the experiments. VAK and MVK prepared the figures and drafted the manuscript. All authors together approved the final manuscript.

Corresponding author

Correspondence to Maksym V. Karachevtsev.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 1973 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karachevtsev, M.V., Valeev, V.A. & Karachevtsev, V.A. Interaction of double-stranded polynucleotide poly(A:U) with graphene/graphene oxide. Eur. Phys. J. E 44, 24 (2021). https://doi.org/10.1140/epje/s10189-021-00030-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00030-z

Navigation