Skip to main content
Log in

Molecular Dynamics Investigation of the Interactions Between RNA Aptamer and Graphene-Monoxide/Boron-Nitride Surfaces: Applications to Novel Drug Delivery Systems

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The interactions between RNA aptamer and boron nitride/graphene monoxide nanosheets were investigated using the molecular dynamics simulations. The potential capability of graphene monoxide and boron nitride surfaces to immobilize RNA aptamer was examined in detail. The distance between center of mass of RNA aptamer and the considered surfaces and root mean square deviation and fluctuation were calculated. The results suggest that the adsorption of RNA aptamer on the boron nitride surface is easily occurred compared to the adsorption on the graphene monoxide surface. Besides, RNA aptamer adsorption on the graphene monoxide nanosheet is energetically more favorable than that on the boron nitride one. The water molecules dipole moment and density profile were used to analyze water effect on the immobilization of aptamer on the GMO and BN surfaces. The results of all-atom molecular dynamics simulations show the higher ability of BN nanosheet for delivery application of this RNA aptamer.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438, 197 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    CAS  PubMed  Google Scholar 

  3. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature 438, 201–204 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, S. Roth, The structure of suspended graphene sheets. Nature 446, 60–63 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. M.Y. Han, B.O¨ zyilmaz, Y. Zhang, P. Kim, Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007)

    Article  PubMed  CAS  Google Scholar 

  6. A. Rycerz, Random matrices and quantum chaos in weakly disordered graphene nanoflakes. Phys. Rev. B 85, 245424 (2012)

    Article  CAS  Google Scholar 

  7. E. Rasanen, C.A. Rozzi, S. Pittalis, G. Vignale, arXiv:1201.1734v3

  8. B.-L. Huang, M.-C. Chang, C.-Y. Mou, Persistent currents in a graphene ring with armchair edges. J. Phys. 24, 245304 (2012)

    Google Scholar 

  9. N.V. Hung, F. Mazzamuto, A. Bournel, P. Dollfus, Resonant tunneling diode based on graphene/h-BN heterostructure. J. Phys. D 45, 325104 (2012)

    Article  CAS  Google Scholar 

  10. Z. Liu, W.B. Cai, L. He, N. Nakayama, K. Chen, X.M. Sun, X.Y. Chen, H.J. Dai, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2, 47–52 (2007)

    Article  CAS  PubMed  Google Scholar 

  11. Z. Liu, S. Tabakman, K. Welsher, H.J. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R.H. Zhou, H.J. Gao, Cytotoxicity of graphene: Recent advances and future perspective. Wiley Interdiscip. Rev. 6, 452–474 (2014)

    CAS  Google Scholar 

  13. A. Sasidharan, L.S. Panchakarla, P. Chandran, D. Menon, S. Nair, C.N.R. Rao, M. Koyakutty, Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3, 2461–2464 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. K. Andre Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Atomic and electronic structure of graphene-oxide. Nano Lett. 9(3), 1058–1063 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. S. Park, J.W. Suk, J. An, J. Oh, S. Lee, W. Lee, J.R. Potts, J.-H. Byunc, R.S. Ruoff, The effect of concentration of graphene nanoplatelets on mechanical and electrical properties of reduced graphene oxide papers. Carbon 50(12), 4573–4578, (2012)

    Article  CAS  Google Scholar 

  16. K. Yang, S. Zhang, G.X. Zhang, X.M. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. S.B. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R.R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 5, 6971–6980 (2011)

    Article  CAS  PubMed  Google Scholar 

  18. A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphenebased materials biocompatibility: a review. Colloids Surf. B 111, 188–202 (2013)

    Article  CAS  Google Scholar 

  19. H. Bai, C. Li, G.Q. Shi, Functional composite materials based on chemically converted graphene. Adv. Mater 23, 1089–1115 (2011)

    Article  CAS  PubMed  Google Scholar 

  20. E.C. Mattson, H. Pu, S. Cui, et al., Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum. ACS Nano 5(12), 9710–9717 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, TheChemistry of Graphene Oxide. Chem. Soc. Rev. 39, 228–240 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Unusual infrared-absorption mechanism in thermally reduced graphene oxide. Nat. Mater. 9, 840–845 (2010)

    Article  CAS  PubMed  Google Scholar 

  23. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2, 581–587 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. M. Acik, C. Mattevi, C. Gong, G. Lee, K. Cho, M. Chhowalla, Y.J. Chabal, The role of intercalated water in multilayered graphene oxide. ACS Nano 4, 5861–5868 (2010)

    Article  CAS  PubMed  Google Scholar 

  25. G. Yang, Y. Zhang, X. Yan, Electronic structure and optical properties of graphene monoxide. J. Semicond. 34, 83004–83021 (2013)

    Article  CAS  Google Scholar 

  26. M. Atabay, J.J. Sardroodi, A.R. Ebrahimzadeh, Adsorption and immobilisation of human insulin on graphene monoxide, silicon carbide and boron nitride nanosheets investigated by molecular dynamics simulation. Mol. Simulat. 43, 298–311 (2017)

    Article  CAS  Google Scholar 

  27. D. Pacilé, J.C. Meyer, ÇÖ Girit, A. Zettl, The two dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)

    Article  CAS  Google Scholar 

  28. C.Y. Zhi, Y. Bando, C.C. Tang, H. Kuwahara, D. Golberg, Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21, 2889–2893 (2009)

    Article  CAS  Google Scholar 

  29. C.K. Yang, Exploring the interaction between the boron nitride nanotube and biological molecules. Comput. Phys. Commun. 182, 39–42 (2011)

    Article  CAS  Google Scholar 

  30. M. Thomas, M. Enciso, T.A. Hilder, Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers. J. Phys. Chem. B 119, 4929–4936 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. T.A. Hilder, N. Gaston, Interaction of boron nitride nanosheets with model cell membranes. ChemPhysChem 17, 1573–1578 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. S. Mateti, C.S. Wong, Z. Liu, W. Yang, Y. Li, L.H. Li, Y. Chen, Biocompatibility of boron nitride nanosheets. Nano Res. 11, 334–342 (2017)

    Google Scholar 

  33. H.M. Ghassemi, C.H. Lee, Y.K. Yap, R.S. Yassar, In situ TEM monitoring of thermal decomposition in individual boron nitride nanotubes, JOM, 62, 62–69 (2010)

    Article  CAS  Google Scholar 

  34. G. Ciofani, V. Raffa, J. Yu, Y. Chen, Y. Obata, S. Takeoka, A. Menciassi, A. Cuschieri, Boron nitride nanotubes: a novel vector for targeted magnetic drug delivery. Curr. Nanosci. 5, 33–38 (2009)

    Article  CAS  Google Scholar 

  35. G. Ciofani, V. Raffa, A. Menciassi, A. Cuschieri, Boron nitride nanotubes: an innovative tool for nanomedicine. Nano Today 4, 8–10 (2009)

    Article  CAS  Google Scholar 

  36. A. Abbasi, J.J. Sardroodi, An innovative method for the removal of toxic SOx molecules from environment by TiO2/Stanene nanocomposites: a first-principles study. J. Inorg. Organomet. Polym. 28, 1901–1913 (2018)

    Article  CAS  Google Scholar 

  37. A. Abbasi, J.J. Sardroodi, Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations. Appl. Surf. Sci. 442, 368–381 (2018)

    Article  CAS  Google Scholar 

  38. A. Abbasi, J.J. Sardroodi, A highly sensitive chemical gas detecting device based on N-doped ZnO as a modified nanostructure media: a DFT + NBO analysis. Surf. Sci. 668, 150–163 (2018)

    Article  CAS  Google Scholar 

  39. N.S. Que-Gewirth, B.A. Sullenger, Gene therapy progress and prospects: RNA aptamers. Gene Ther. 14, 283–291 (2007)

    Article  CAS  PubMed  Google Scholar 

  40. D.B. Huang, D. Vu, L.A. Cassiday, J.M. Zimmerman, L.J. Maher III, G. Ghosh, Crystal structure of NF-kappaB (p50)2 complexed to a high-affinity RNA aptamer. Proc. Natl. Acad. Sci. USA 100, 9268–9273 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. C.P. Rusconi, J.D. Roberts, G.A. Pitoc, S.M. Nimjee, R.R. White, G. Quick Jr., et al., Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22, 1423–1428 (2004)

    Article  CAS  PubMed  Google Scholar 

  42. S. Santulli-Marotto, S.K. Nair, C. Rusconi, B. Sullenger, E. Gilboa, Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 63, 7483–7489 (2003)

    CAS  PubMed  Google Scholar 

  43. X. Yu, S. Ghamande, H. Liu, L. Xue, S. Zhao, W. Tan, L. Zhao, S.C. Tang, D. Wu, H. Korkaya, N.J. Maihle, H.Y. Liu, Targeting EGFR/HER2/HER3 with a three-in-one aptamer-siRNA chimera confers superior activity against HER2+ breast cancer. Mol. Ther. Nucleic Acids. 10, 317–330 (2018). https://doi.org/10.1016/j.omtn.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  44. V. Romanucci, A. Zarrelli, S. Liekens, S. Noppen, C. Pannecouque, G. Di Fabio, New findings on the d(TGGGAG) sequence: Surprising anti-HIV-1 activity. Eur. J. Med. Chem. 145, 425–430 (2018). https://doi.org/10.1016/j.ejmech.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  45. J. Bala, S. Chinnapaiyan, R.K. Dutta, H. Unwalla, Aptamers in HIV research diagnosis and therapy. RNA Biol. 15, 327–337 (2018). https://doi.org/10.1080/15476286.2017.1414131

    Article  PubMed  PubMed Central  Google Scholar 

  46. J.L. Henri, J. Macdonald, M. Strom, W. Duan, S. Shigdar, Aptamers as potential therapeutic agents for ovarian cancer. Biochimie. 145, 34–44 (2018). https://doi.org/10.1016/j.biochi.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  47. A. Bouvier-Müller, F. Ducongé, Nucleic acid aptamers for neurodegenerative diseases. Biochimie. 145, 73–83 (2018). https://doi.org/10.1016/j.biochi.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  48. J.I. Jung, S.R. Han, S.W. Lee, Development of RNA aptamer that inhibits methyltransferase activity of dengue virus. Biotechnol. Lett. 40, 315–324 (2018). https://doi.org/10.1007/s10529-017-2462-7

    Article  CAS  PubMed  Google Scholar 

  49. M. Chakravarthy, H. AlShamaileh, H. Huang, R.K. Tannenberg, S. Chen, S. Worrall, P.R. Dodd, R.N. Veedu, Development of DNA aptamers targeting low-molecular-weight amyloid-β peptide aggregates in vitro. Chem. Commun. 54, 4593–4596 (2018). https://doi.org/10.1039/C8CC02256A

    Article  CAS  Google Scholar 

  50. M. Yang, D. Xu, L. Jiang, L. Zhang, D. Dustin, R. Lund, L. Liu, H. Dong, Filamentous supramolecular peptide-drug conjugates as highly efficient drug delivery vehicles. Chem. Commun. 50, 4827 (2014)

    Article  CAS  Google Scholar 

  51. L. Liu, L. Zhang, Z. Sun, G. Xi, Graphene nanoribbon-guided fluid channel: a fast transporter of nanofluids. Nanoscale 4, 6279 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. L. Zhang, Z. Bai, L. Liu, Exceptional thermal conductance across hydrogen–bonded graphene/polymer interfaces, Adv. Mater. Interfaces, 3, 1600211 (2016)

    Article  CAS  Google Scholar 

  53. American Mineralogist Crystal Structure Database, 2018 (n.d.). http://rruff.geo.arizona.edu/AMS/amcsd.php (accessed June 8)

  54. S. Fleming, A. Rohl, GDIS: a visualization program for molecular and periodic systems. Z. Für Krist. Cryst. Mater. 220, 580-584. https://doi.org/10.1524/zkri.220.5.580.65071

    Article  Google Scholar 

  55. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  56. N. Li, H.H. Nguyen, M. Byrom, A.D. Ellington, Inhibition of cell proliferation by an anti-EGFR aptamer. PLoS ONE 6, e20299 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A. Xayaphoummine, T. Bucher, H. Isambert, Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605–W610 (2005). https://doi.org/10.1093/nar/gki447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. M. Magnus, M.J. Boniecki, W. Dawson, J.M. Bujnicki, SimRNAweb: a web server for RNA 3D structure modeling with optional restraints. Nucleic Acids Res. 44, 315–319 (2016). https://doi.org/10.1093/nar/gkw279

    Article  CAS  Google Scholar 

  59. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005). https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, A.D. Mackerell, CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. (2009). https://doi.org/10.1002/jcc.21367

    Article  Google Scholar 

  61. L. Ningbo, Z. Beirong, Z. Hongming, X. Wei, First principle investigation on structural and electronic properties of silicon oxycarbide ceramics. J. Alloys Compd. 647, 665–669 (2015)

    Article  CAS  Google Scholar 

  62. L. Ningbo, X. Wei, Z. Hongming, Z. Miao, Molecular dynamics investigation of structure and high-temperature mechanical properties of SiBCO ceramics. J. Alloys Compd. 610, 45–49 (2014)

    Article  CAS  Google Scholar 

  63. L. Ningbo, Z. Beirong, Z. Hongming, X. Wei, Effect of carbon segregation on performance of inhomogeneous SiCyO6/5 as anode materials for lithium-ion battery: a first-principles study. J. Power Sources 334, 39–43 (2016)

    Article  CAS  Google Scholar 

  64. R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, 2nd edn. (Springer, New York, 1991)

    Book  Google Scholar 

  65. S.E. Feller, Y. Zhang, R.W. Pastor, B.R. Brooks, Constant pressure molecular dynamics simulation: the Langevin piston method. J. Chem. Phys. 103, 4613 (1995)

    Article  CAS  Google Scholar 

  66. J. Azamat, J.J. Sardroodi, A. Rastkar, Molecular dynamics simulation of ion separation and water transport trough boron nitride nanotubes. Desalination Water Treat. 56, 1090–1098 (2015)

    Article  CAS  Google Scholar 

  67. L. Zhang, T. chen, H. Ban, L. Liu, Hydrogen bonding-assisted thermal conduction in beta-sheet crystals of spider silk protein. Nanoscale 6, 7786–7791 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. L. Zhang, Z. Baj, H. Ban, L. Liu, Effects of the amino acid sequence on thermal conduction through ß-sheet crystals of natural silk protein. Phys. Chem. Chem. Phys. 17, 29007–29013 (2015)

    Article  CAS  PubMed  Google Scholar 

  69. D.A. McQuarrie, Statistical thermodynamics, Univ. Sci. Books (1984)

  70. K. Xu, J. Jicheng Zhang, X. Xiaoli Hao, C. Chunbo Zhang, N. Ning Wei, C. Zhang, Wetting properties of defective graphene oxide: a molecular simulation study. Molecules 23, 1439 (2018). https://doi.org/10.3390/molecules23061439

    Article  CAS  PubMed Central  Google Scholar 

  71. J.M. Healy, S.D. Lewis, M. Kurz, R.M. Boomer, K.M. Thompson, C. Wilson et al., Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234–2246 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by Azarbaijan Shahid Madani University. [Grant number 214/D/25972]. The authors thank to Dr. Amirali Abbasi for valuable discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaber Jahanbin Sardroodi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibzadeh Mashatooki, M., Sardroodi, J.J. & Ebrahimzadeh, A.R. Molecular Dynamics Investigation of the Interactions Between RNA Aptamer and Graphene-Monoxide/Boron-Nitride Surfaces: Applications to Novel Drug Delivery Systems. J Inorg Organomet Polym 29, 1252–1264 (2019). https://doi.org/10.1007/s10904-019-01089-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01089-0

Keywords

Navigation