Skip to main content
Log in

Conducting transition analysis of thin films composed of long flexible macromolecules: Percolation study

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

By simulating percolation and critical phenomena of labelled species inside films composed of single-component linear homogeneous macromolecules using the molecular Monte Carlo method in 3 dimensions, we study the dependence of these conducting transition and critical phenomena upon both thermal movements, i.e. spontaneous mobility, and extra-molecular topological constraints of the molecules. Systems containing topological constraints and/or composed of immobile particles, e.g. lattice models and chemical gelation, were studied in conventional works on percolation. Coordinates of the randomly distributed particles in the conventional lattice models are limited to discrete lattice points. Moreover, each particle is spatially fixed at the distributed position, which results in a temporally unchanged network structure. Although each polymer in the chemical gels can spontaneously move in the continuous space, the network structure is fixed when cross-linking reaction ends. By contrast to these conventional systems, all the molecules in the present system freely move and spontaneously diffuse in the continuous space. The network structure of the present molecules continues changing dynamically. The percolation and critical phenomena of such dynamic network structures are examined here. We reveal that these phenomena also occur in the present system, and that both the universality class and percolation threshold are independent of the extra-molecular topological constraints.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.-M. Hur, G.S. Khaira, A. Ramírez-Hernández, M. Müller, P.F. Nealey, J.J. de Pablo, ACS Macro Lett. 4, 11 (2015)

    Article  Google Scholar 

  2. A.P. Marencic, P.M. Chaikin, R.A. Register, Phys. Rev. E 86, 021507 (2012)

    Article  ADS  Google Scholar 

  3. N. Lefevre, K.C. Daoulas, M. Müller, J.-F. Gohy, C.-A. Fustin, Macromolecules 43, 7734 (2010)

    Article  ADS  Google Scholar 

  4. X. Gu, I. Gunkel, A. Hexemer, W. Gu, T.P. Russell, Adv. Mater. 26, 273 (2014)

    Article  Google Scholar 

  5. J.K. Bosworth, M.Y. Paik, R. Ruiz, E.L. Schwartz, J.Q. Huang, A.W. Ko, D.-M. Smilgies, C.T. Black, C.K. Ober, ACS Nano 2, 1396 (2008)

    Article  Google Scholar 

  6. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1994)

  7. M. Sahimi, Applications of Percolation Theory (Taylor & Francis, London, 1994).

  8. Y. Norizoe, T. Kawakatsu, J. Chem. Phys. 137, 024904 (2012)

    Article  ADS  Google Scholar 

  9. Y. Norizoe, T. Kawakatsu, Europhys. Lett. 72, 583 (2005)

    Article  ADS  Google Scholar 

  10. Y. Norizoe, H. Jinnai, A. Takahara, J. Chem. Phys. 140, 054904 (2014)

    Article  ADS  Google Scholar 

  11. Y. Norizoe, H. Jinnai, A. Takahara, EPL 101, 16006 (2013)

    Article  ADS  Google Scholar 

  12. G. Kondrat, J. Chem. Phys. 117, 6662 (2002)

    Article  ADS  Google Scholar 

  13. P. Adamczyk, P. Polanowski, A. Sikorski, J. Chem. Phys. 131, 234901 (2009)

    Article  ADS  Google Scholar 

  14. S. Zerko, P. Polanowski, A. Sikorski, Soft Matter 8, 973 (2012)

    Article  ADS  Google Scholar 

  15. P. Polanowski, E. Wawrzyńska, A. Sikorski, Macromol. Theor. Simul. 22, 238 (2013)

    Article  Google Scholar 

  16. A. Yethiraj, Macromolecules 36, 5854 (2003)

    Article  ADS  Google Scholar 

  17. P. Polanowski, A. Sikorski, Soft Matter 14, 8249 (2018)

    Article  ADS  Google Scholar 

  18. J.M. Drouffe, A.C. Maggs, S. Leibler, Science 254, 1353 (1991)

    Article  ADS  Google Scholar 

  19. K.C. Daoulas, M. Müller, Adv. Polym. Sci. 224, 197 (2010)

    Google Scholar 

  20. Y. Norizoe, Measuring the Free Energy of Self-assembling Systems in Computer Simulation, PhD Thesis, Institute for Theoretical Physics, University of Göttingen, Göttingen, Germany (2010) available on-line at http://webdoc.sub.gwdg.de/diss/2010/norizoe/

  21. Y. Norizoe, K.C. Daoulas, M. Müller, Faraday Discuss. 144, 369 (2010)

    Article  ADS  Google Scholar 

  22. D. Murakami, Y. Norizoe, Y. Higaki, A. Takahara, H. Jinnai, Macromolecules 49, 4862 (2016)

    Article  ADS  Google Scholar 

  23. M. Doi, Introduction to Polymer Physics (Oxford University Press, Oxford, 1996)

  24. M. Müller, K.C. Daoulas, Y. Norizoe, Phys. Chem. Chem. Phys. 11, 2087 (2009)

    Article  Google Scholar 

  25. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)

    Article  ADS  Google Scholar 

  26. R.D. Groot, T.J. Madden, J. Chem. Phys. 108, 8713 (1998)

    Article  ADS  Google Scholar 

  27. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989)

    Book  Google Scholar 

  28. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, London, 2002)

    Chapter  Google Scholar 

  29. M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simul. 8, 3 (1998)

    Article  Google Scholar 

  30. M. Matsumoto, Y. Kurita, ACM Trans. Model. Comput. Simul. 2, 179 (1992)

    Article  Google Scholar 

  31. M. Matsumoto, Y. Kurita, ACM Trans. Model. Comput. Simul. 4, 254 (1994)

    Article  Google Scholar 

  32. T. Kawakatsu, Statistical Physics of Polymers: An Introduction (Springer, 2004)

  33. R. Zallen, The Physics of Amorphous Solids (Wiley, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Norizoe.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norizoe, Y., Morita, H. Conducting transition analysis of thin films composed of long flexible macromolecules: Percolation study. Eur. Phys. J. E 42, 115 (2019). https://doi.org/10.1140/epje/i2019-11884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11884-9

Keywords

Navigation