Skip to main content
Log in

Free energy of conformational isomers: The case of gapped DNA duplexes

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Liquid-crystalline phases in all-DNA systems have been extensively studied in the past and although nematic, cholesteric and columnar mesophases have been observed, the smectic phase remained elusive. Recently, it has been found evidence of a smectic-A ordering in an all-DNA system, where the constituent particles, which are gapped DNA duplexes, resemble chain-sticks. It has been argued that in the smectic-A phase these DNA chain-sticks should be folded as a means to suppress aggregate polydispersity and excluded volume. Nevertheless, if initial crystalline configurations are prepared in silico with gapped DNA duplexes either fully unfolded or fully folded by carrying out computer simulations one can end up with two different phases having at the same concentration and temperature the majority of gapped DNA duplexes either folded or unfolded. This result suggests that these two phases have a small free energy difference, since no transition is observed from one to the other within the simulation time span. In the present manuscript, we assess which of these two phases is thermodynamically stable through a suitable protocol based on thermodynamic integration. Our method is rather general and it can be used to discriminate stable states from metastable ones of comparable free energy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nakata, G. Zanchetta, B.D. Chapman, C.D. Jones, J.O. Cross, R. Pindak, T. Bellini, N.A. Clark, Science 318, 1276 (2007)

    Article  ADS  Google Scholar 

  2. G. Zanchetta, Liq. Cryst. Today 18, 40 (2009)

    Article  Google Scholar 

  3. G. Zanchetta, F. Giavazzi, M. Nakata, M. Buscaglia, R. Cerbino, N.A. Clark, T. Bellini, Proc. Natl. Acad. Sci. U.S.A. 107, 17497 (2010)

    Article  ADS  Google Scholar 

  4. C. Maffeo, B. Luan, A. Aksimentiev, Nucl. Acids Res. 40, 3812 (2012)

    Article  Google Scholar 

  5. M. Salamonczyk, J. Zhang, G. Portale, C. Zhu, E. Kentzinger, J.T. Gleeson, A. Jakli, C. De Michele, J.K.G. Dhont, S. Sprunt et al.., Nat. Commun. 7, 13358 (2016)

    Article  ADS  Google Scholar 

  6. G.P. Smith, T.P. Fraccia, M. Todisco, G. Zanchetta, C. Zhu, E. Hayden, T. Bellini, N.A. Clark, Proc. Natl. Acad. Sci. U.S.A. 115, E7658 (2018)

    Article  ADS  Google Scholar 

  7. S.D. Leo, M. Todisco, T. Bellini, T.P. Fraccia, Liq. Cryst. 45, 2306 (2018)

    Article  Google Scholar 

  8. T.P. Fraccia, G.P. Smith, N.A. Clark, T. Bellini, Crystals 8, 5 (2017)

    Article  Google Scholar 

  9. S. Saurabh, Y. Lansac, Y.H. Jang, M.A. Glaser, N.A. Clark, P.K. Maiti, Phys. Rev. E 95, 032702 (2017)

    Article  ADS  Google Scholar 

  10. R. Cortini, X. Cheng, J.C. Smith, J. Phys.: Condens. Matter 29, 084002 (2017)

    ADS  Google Scholar 

  11. C. Robinson, Tetrahedron 13, 219 (1961)

    Article  Google Scholar 

  12. R.L. Rill, Proc. Natl. Acad. Sci. U.S.A. 83, 342 (1986)

    Article  ADS  Google Scholar 

  13. R. Brandes, D.R. Kearns, Biochemistry 25, 5890 (1986)

    Article  Google Scholar 

  14. D. Durand, J. Doucet, F. Livolant, J. Phys. II 2, 1769 (1992)

    Google Scholar 

  15. F. Livolant, A.M. Levelut, J. Doucet, J.P. Benoit, Nature 339, 724 (1989)

    Article  ADS  Google Scholar 

  16. T.M. Alam, G. Drobny, J. Chem. Phys. 92, 6840 (1990)

    Article  ADS  Google Scholar 

  17. F. Livolant, A. Leforestier, Prog. Polym. Sci. 21, 1115 (1996)

    Article  Google Scholar 

  18. J. Pelta, D. Durand, J. Doucet, F. Livolant, Biophys. J. 71, 48 (1996)

    Article  Google Scholar 

  19. K. Merchant, R.L. Rill, Biophys. J. 73, 3154 (1997)

    Article  Google Scholar 

  20. H.H. Strey, R. Podgornik, D.C. Rau, V.A. Parsegian, Curr. Opin. Struct. Biol. 8, 309 (1998)

    Article  Google Scholar 

  21. R. Podgornik, H.H. Strey, V.A. Parsegian, Curr. Opin. Colloid Interface Sci. 3, 534 (1998)

    Article  Google Scholar 

  22. F. Tombolato, A. Ferrarini, J. Chem. Phys. 122, 054908 (2005)

    Article  ADS  Google Scholar 

  23. T.E. Strzelecka, M.W. Davidson, R.L. Rill, Nature 331, 457 (1988)

    Article  ADS  Google Scholar 

  24. F. Livolant, Y. Bouligand, J. Phys. (Paris) 47, 1813 (1986)

    Article  Google Scholar 

  25. C. De Michele, T. Bellini, F. Sciortino, Macromolecules 45, 1090 (2012)

    Article  ADS  Google Scholar 

  26. C. De Michele, L. Rovigatti, T. Bellini, F. Sciortino, Soft Matter 8, 8388 (2012)

    Article  ADS  Google Scholar 

  27. C. De Michele, G. Zanchetta, T. Bellini, E. Frezza, A. Ferrarini, ACS Macro Lett. 5, 208 (2016)

    Article  Google Scholar 

  28. K.T. Nguyen, A. Battisti, D. Ancora, F. Sciortino, C. De Michele, Soft Matter 11, 2934 (2015)

    Article  ADS  Google Scholar 

  29. M. Schoen, A.J. Haslam, G. Jackson, Langmuir 33, 11345 (2017)

    Article  Google Scholar 

  30. P. Bolhuis, D. Frenkel, J. Chem. Phys. 106, 666 (1997)

    Article  ADS  Google Scholar 

  31. A. Haji-Akbari, M. Engel, S.C. Glotzer, J. Chem. Phys. 135, 194101 (2011)

    Article  ADS  Google Scholar 

  32. G. Navascués, E. Velasco, Phys. Rev. E 95, 032140 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. B. Cheng, M. Ceriotti, Phys. Rev. B 97, 054102 (2018)

    Article  ADS  Google Scholar 

  34. M. Radu, P. Pfleiderer, T. Schilling, J. Chem. Phys. 131, 164513 (2009)

    Article  ADS  Google Scholar 

  35. M. Müller, K.C. Daoulas, J. Chem. Phys. 128, 024903 (2008)

    Article  ADS  Google Scholar 

  36. C. Greco, Y. Jiang, J.Z.Y. Chen, K. Kremer, K.C. Daoulas, J. Chem. Phys. 145, 184901 (2016)

    Article  ADS  Google Scholar 

  37. K.T. Nguyen, F. Sciortino, C. De Michele, Langmuir 30, 4814 (2014)

    Article  Google Scholar 

  38. C. Vega, E. Sanz, J.L.F. Abascal, E.G. Noya, J. Phys.: Condens. Matter 20, 153101 (2008)

    ADS  Google Scholar 

  39. P.A. O’Brien, M.P. Allen, D.L. Cheung, M. Dennison, A. Masters, Phys. Rev. E 78, 051705 (2008)

    Article  ADS  Google Scholar 

  40. L.V. Woodcock, Nature 385, 141 (1997)

    Article  ADS  Google Scholar 

  41. P.G. Bolhuis, D. Frenkel, S.C. Mau, D.A. Huse, Nature 388, 235 (1997)

    Article  ADS  Google Scholar 

  42. K. Kendall, C. Stainton, F. van Swol, L.V. Woodcock, Int. J. Thermophys. 23, 175 (2002)

    Article  Google Scholar 

  43. E.G. Noya, N.G. Almarza, Mol. Phys. 113, 1061 (2015)

    Article  ADS  Google Scholar 

  44. I.P. Dolbnya, A.V. Petukhov, D.G.A.L. Aarts, G.J. Vroege, H.N.W. Lekkerkerker, Europhys. Lett. 72, 962 (2005)

    Article  ADS  Google Scholar 

  45. R. Zandi, P. van der Schoot, D. Reguera, W. Kegel, H. Reiss, Biophys. J. 90, 1939 (2006)

    Article  ADS  Google Scholar 

  46. C.A. Koh, A.K. Sum, E.D. Sloan, J. Appl. Phys. 106, 061101 (2009)

    Article  ADS  Google Scholar 

  47. D.K. Staykova, W.F. Kuhs, A.N. Salamatin, T. Hansen, J. Phys. Chem. B 107, 10299 (2003)

    Article  Google Scholar 

  48. U. Ranieri, M.M. Koza, W.F. Kuhs, S. Klotz, A. Falenty, P. Gillet, L.E. Bove, Nat. Commun. 8, 1076 (2017)

    Article  ADS  Google Scholar 

  49. S. Schaack, U. Ranieri, P. Depondt, R. Gaal, W.F. Kuhs, A. Falenty, P. Gillet, F. Finocchi, L.E. Bove, J. Phys. Chem. C 122, 11159 (2018)

    Article  Google Scholar 

  50. L. Bove, U. Ranieri, Philos. Trans. R. Soc. A 377, 20180262 (2019)

    Article  ADS  Google Scholar 

  51. E. Sloan, C. Koh, Clathrate Hydrates of Natural Gases, 3rd edition (CRC Press, Boca Raton, Florida, 2008)

  52. L.C. Jacobson, V. Molinero, J. Am. Chem. Soc. 133, 6458 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano De Michele.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orellana, A.G., De Michele, C. Free energy of conformational isomers: The case of gapped DNA duplexes. Eur. Phys. J. E 42, 71 (2019). https://doi.org/10.1140/epje/i2019-11836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11836-5

Keywords

Navigation