Skip to main content
Log in

Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Black, K. Guarini, G. Breyta, M. Colburn, R. Ruiz, R. Sandstrom, E. Sikorski, Y. Zhang, J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. Process. Meas. Phenom. 24, 3188 (2006)

    Article  ADS  Google Scholar 

  2. R. Shenhar, T.B. Norsten, V.M. Rotello, Adv. Mater. 17, 657 (2005)

    Article  Google Scholar 

  3. R.B. Thompson, V.V. Ginzburg, M.W. Matsen, A.C. Balazs, Macromolecules 35, 1060 (2002)

    Article  ADS  Google Scholar 

  4. A. Haryono, W.H. Binder, Small 2, 600 (2006)

    Article  Google Scholar 

  5. Y. Lin, A. Böker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long et al., Nature 434, 55 (2005)

    Article  ADS  Google Scholar 

  6. B. Rozenberg, R. Tenne, Prog. Polym. Sci. 33, 40 (2008)

    Article  Google Scholar 

  7. H.A. Patel, R.S. Somani, H.C. Bajaj, R.V. Jasra, Bull. Mater. Sci. 29, 133 (2006)

    Article  Google Scholar 

  8. R.Y. Lochhead, The role of polymers in cosmetics: Recent trends, in Cosmetic Nanotechnology (ACS Publications, 2007) Chapt. 1, pp. 3--56, https://pubs.acs.org/doi/pdf/10.1021/bk-2007-0961.ch001

  9. L.M. Katz, Nanotechnology and applications in cosmetics: General overview, in Cosmetic Nanotechnology (ACS Publications, 2007) Chapt. 11, pp. 193--200, https://pubs.acs.org/doi/pdf/10.1021/bk-2007-0961.ch011

  10. S. Raj, S. Jose, U. Sumod, M. Sabitha, J. Pharm. Bioallied Sci. 4, 186 (2012)

    Article  Google Scholar 

  11. H.M. De Azeredo, Food Res. Int. 42, 1240 (2009)

    Article  Google Scholar 

  12. N. Sozer, J.L. Kokini, Trends Biotechnol. 27, 82 (2009)

    Article  Google Scholar 

  13. V. Mourio, in Nanocomposites for Musculoskeletal Tissue Regeneration, edited by H. Liu (Woodhead Publishing, Oxford, 2016) pp. 175--186

  14. P. Dwivedi, S.S. Narvi, R.P. Tewari, J. Appl. Biomater. Funct. Mater. 11, 129 (2013)

    Google Scholar 

  15. C. Ingrosso, A. Panniello, R. Comparelli, M.L. Curri, M. Striccoli, Materials 3, 1316 (2010)

    Article  ADS  Google Scholar 

  16. M. Striccoli, M. Curri, R. Comparelli, in Toward Functional Nanomaterials (Springer, 2009) pp. 173--192

  17. G. Kedawat, B.K. Gupta, P. Kumar, J. Dwivedi, A. Kumar, N.K. Agrawal, S.S. Kumar, Y.K. Vijay, ACS Appl. Mater. Interfaces 6, 8407 (2014)

    Article  Google Scholar 

  18. L. Gence, V. Callegari, S. Melinte, S. Demoustier-Champagne, Y. Long, A. Dinescu, J. Duvail, in Nanowires Science and Technology (InTech, 2010)

  19. S. Park, S.-W. Chung, C.A. Mirkin, J. Am. Chem. Soc. 126, 11772 (2004)

    Article  Google Scholar 

  20. T.K. Das, S. Prusty, Polym.-Plast. Technol. Eng. 51, 1487 (2012)

    Article  Google Scholar 

  21. A. Turberfield, Phys. World 16, 43 (2003)

    Article  Google Scholar 

  22. S.H. Park, H. Yan, J.H. Reif, T.H. LaBean, G. Finkelstein, Nanotechnology 15, S525 (2004)

    Article  Google Scholar 

  23. M. Alam, A. Siddiqui, M. Husain et al., Express Polym. Lett. 7, 723 (2013)

    Article  Google Scholar 

  24. H. Lekkerkerker, W.-K. Poon, P. Pusey, A. Stroobants, P. Warren, Europhys. Lett. 20, 559 (1992)

    Article  ADS  Google Scholar 

  25. W. Poon, J. Phys.: Condens. Matter 14, R859 (2002)

    ADS  Google Scholar 

  26. S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954)

    Article  ADS  Google Scholar 

  27. A. Gast, C. Hall, W. Russel, J. Colloid Interface Sci. 96, 251 (1983)

    Article  ADS  Google Scholar 

  28. H. De Hek, A. Vrij, J. Colloid Interface Sci. 84, 409 (1981)

    Article  ADS  Google Scholar 

  29. G.J. Fleer, A.M. Skvortsov, R. Tuinier, Macromol. Theory Simul. 16, 531 (2007)

    Article  Google Scholar 

  30. W. Poon, A. Pirie, M. Haw, P. Pusey, Physica A: Stat. Mech. Appl. 235, 110 (1997)

    Article  ADS  Google Scholar 

  31. I. Zhang, C.P. Royall, M.A. Faers, P. Bartlett, Soft Matter 9, 2076 (2013)

    Article  ADS  Google Scholar 

  32. L. Starrs, W. Poon, D. Hibberd, M. Robins, J. Phys.: Condens. Matter 14, 2485 (2002)

    ADS  Google Scholar 

  33. Y.M. Joshi, Annu. Rev. Chem. Biomol. Eng. 5, 181 (2014)

    Article  Google Scholar 

  34. C. Kresge, M. Leonowicz, W.J. Roth, J. Vartuli, J. Beck, Nature 359, 710 (1992)

    Article  ADS  Google Scholar 

  35. M. Seul, D. Andelman, Science 267, 476 (1995)

    Article  ADS  Google Scholar 

  36. Z. Tang, Z. Zhang, Y. Wang, S.C. Glotzer, N.A. Kotov, Science 314, 274 (2006)

    Article  ADS  Google Scholar 

  37. K. Van Workum, J.F. Douglas, Phys. Rev. E 73, 031502 (2006)

    Article  ADS  Google Scholar 

  38. D. Bedrov, G.D. Smith, L. Li, Langmuir 21, 5251 (2005)

    Article  Google Scholar 

  39. J.S. Shay, S.R. Raghavan, S.A. Khan, J. Rheol. 45, 913 (2001)

    Article  ADS  Google Scholar 

  40. S.N. Fejer, D.J. Wales, Phys. Rev. Lett. 99, 086106 (2007)

    Article  ADS  Google Scholar 

  41. S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)

    Article  Google Scholar 

  42. J.Y. Lee, A.C. Balazs, R.B. Thompson, R.M. Hill, Macromolecules 37, 3536 (2004)

    Article  ADS  Google Scholar 

  43. N. Xu, Q. Zhang, H. Yang, Y. Xia, Y. Jiang, Sci. Rep. 7, 43970 (2017)

    Article  ADS  Google Scholar 

  44. H. Sun, B. Yang, Sci. China Ser. E: Technol. Sci. 51, 1886 (2008)

    Article  Google Scholar 

  45. Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E.L. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov, A. Ostendorf, Polymers 6, 2037 (2014)

    Article  Google Scholar 

  46. Y. Luo, Z. Zheng, C. Xu, Z. Xie, Z. Zhang, Mater. Sci. Eng. A 432, 69 (2006)

    Article  Google Scholar 

  47. M.K. Abyaneh, P. Parisse, L. Casalis, Beilstein J. Nanotechnol. 7, 809 (2016)

    Article  Google Scholar 

  48. G. Cao, Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications (World Scientific, 2004)

  49. Z.L. Wang, Nanowires and Nanobelts: Materials, Properties and Devices, Vol. 1: Metal and Semiconductor Nanowires (Springer Science & Business Media, 2013)

  50. A. Umar, S.H. Kim, Y.-B. Hahn, Curr. Appl. Phys. 8, 793 (2008)

    Article  ADS  Google Scholar 

  51. C.S. Lao, P.X. Gao, R.S. Yang, Y. Zhang, Y. Dai, Z.L. Wang, Chem. Phys. Lett. 417, 358 (2006)

    Article  ADS  Google Scholar 

  52. S. Singh, E.S. Kumar, M. Kottaisamy, M.R. Rao, in AIP Conference Proceedings, Vol. 1276 (AIP, 2010) pp. 37--42

  53. R.K. Pandey, U. Rana, C. Chakraborty, S. Moriyama, M. Higuchi, ACS Appl. Mater. Interfaces 8, 13526 (2016)

    Article  Google Scholar 

  54. Y. Vyborna, S. Altunbas, M. Vybornyi, R. Häner, Chem. Commun. 53, 12128 (2017)

    Article  Google Scholar 

  55. Q. Xu, Nanoporous Materials: Synthesis and Applications (CRC Press, 2013)

  56. J.Y. Ying, C.P. Mehnert, M.S. Wong, Angew. Chem. Int. Ed. 38, 56 (1999)

    Article  Google Scholar 

  57. K.P. Sharma, G. Kumaraswamy, I. Ly, O. Mondain-Monval, J. Phys. Chem. B 113, 3423 (2009)

    Article  Google Scholar 

  58. L. Ramos, P. Fabre, F. Nallet, C.-Y. Lu, Eur. Phys. J. E 1, 285 (2000)

    Article  Google Scholar 

  59. L. Sallen, P. Oswald, J. Géminard, J. Malthête, J. Phys. II 5, 937 (1995)

    Google Scholar 

  60. J.-F. Berret, in Molecular Gels (Springer, 2006) pp. 667--720

  61. M. Turner, M. Cates, J. Phys. (Paris) 51, 307 (1990)

    Article  Google Scholar 

  62. M. Cates, J. Phys. Chem. 94, 371 (1990)

    Article  Google Scholar 

  63. S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nano Rev. 1, 5214 (2010)

    Article  Google Scholar 

  64. G. Ambrosetti, On the Insulator-Conductor Transition in Polymer Nanocomposites (EPFL, 2010)

  65. A. Chatterji, R. Pandit, Europhys. Lett. 54, 213 (2001)

    Article  ADS  Google Scholar 

  66. A. Chatterji, R. Pandit, J. Stat. Phys. 110, 1219 (2003)

    Article  Google Scholar 

  67. S. Mubeena, A. Chatterji, Phys. Rev. E 91, 032602 (2015)

    Article  ADS  Google Scholar 

  68. M.E. Helgeson, T. Hodgdon, E.W. Kaler, N.J. Wagner, M. Vethamuthu, K.P. Ananthapadmanabhan, Langmuir 26, 8049 (2010)

    Article  Google Scholar 

  69. B. Biswas, C.K. Choudhury, G. Kumaraswamy, Faraday Discuss. 186, 61 (2016)

    Article  ADS  Google Scholar 

  70. S. Chatterjee, P. Doshi, G. Kumaraswamy, Soft Matter 13, 5731 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apratim Chatterji.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubeena, S., Chatterji, A. Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies. Eur. Phys. J. E 42, 50 (2019). https://doi.org/10.1140/epje/i2019-11811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11811-2

Keywords

Navigation