Skip to main content
Log in

Self-Assembling Polymer Nanocomposites Based on Symmetric Diblock Copolymers: Mesoscopic Modeling

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

A polymer nanocomposite based on a symmetrical AB diblock copolymer filled with planar nanoparticles (NPs) has been studied by the dissipative particle dynamics method. The developed model predicts that NPs can reduce the threshold of thermodynamic incompatibility of blocks A and B, above which microphase separation of the polymer matrix occurs to give a lamellar phase. Depending on the features of the polymer/NP interaction, two types of stable orientations of the NP plane are formed: along and across the lamellar domains. This effect can be used to control the distribution of NPs in multiphase polymeric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Adeosun, S.O., Lawal, G.I., Balogun, S.A., and Akpan, E.I., J. Miner. Mater. Charact. Eng., 2012, vol. 11, no. 4, pp. 483–514. https://doi.org/10.4236/jmmce.2012.114028

    Article  Google Scholar 

  2. Ray, S.S., Macromol. Chem. Phys., 2014, vol. 215, no. 12, pp. 1162–1179. https://doi.org/10.1002/macp.201400069

    Article  CAS  Google Scholar 

  3. Park, J.H. and Jana, S.C., Polymer, 2003, vol. 44, no. 7, pp. 2091–2100. https://doi.org/10.1016/S0032-3861(03)00075-2

    Article  CAS  Google Scholar 

  4. Khalatur, P.G. and Khokhlov, A.R., Soft Matter, 2013, vol. 9, no. 43, pp. 10943–10954. https://doi.org/10.1039/C3SM52181H

    Article  CAS  Google Scholar 

  5. Kim, J.H., Jin, H.M., Yang, G.G., Han, K.H., Yun, T., Shin, J.Y., Jeong, S.-J., and Kim, S.O., Adv. Funct. Mater., 2020, vol. 30, no. 2, p. 1902049. https://doi.org/10.1002/adfm.201902049

    Article  CAS  Google Scholar 

  6. Schultz, A.J., Hall, C.K., and Genzer, J., Macromolecules, 2005, vol. 38, no. 7, pp. 3007–3016. https://doi.org/10.1021/ma0496910

    Article  CAS  Google Scholar 

  7. Sides, S.W., Kim, B.J., Kramer, E.J., and Fredrickson, G.H., Phys. Rev. Lett., 2006, vol. 96, nos. 25–30, pp. 250601–4. https://doi.org/10.1103/PhysRevLett.96.250601

    Article  CAS  Google Scholar 

  8. He, L., Zhang, L., and Liang, H., J. Phys. Chem. B, 2008, vol. 112, no. 14, pp. 4194–4203. https://doi.org/10.1021/jp0757412

    Article  CAS  Google Scholar 

  9. Matsen, M.W. and Thompson, R.B., Macromolecules, 2008, vol. 41, no. 5, pp. 1853–1860. https://doi.org/10.1021/ma7024545

    Article  CAS  Google Scholar 

  10. Zhang, Z., Li, T., and Nies, E., Macromolecules, 2014, vol. 47, no. 15, pp. 5416–5423. https://doi.org/10.1021/ma500690g

    Article  CAS  Google Scholar 

  11. Berezkin, A.V., Kudryavtsev, Ya.V., Gorkunov, M.V., and Osipov, M.A., J. Chem. Phys., 2017, vol. 146, no. 15, p. 144902. https://doi.org/10.1063/1.4979897

    Article  CAS  Google Scholar 

  12. Osipov, M.A., Kudryavtsev, Y.V., Ushakova, A.S., and Berezkin, A.V., Liq. Cryst., 2018, vol. 45, nos. 13–15, pp. 2065–2073. https://doi.org/10.1080/02678292.2018.1519122

    Article  CAS  Google Scholar 

  13. Komarov, P.V., Guseva, D.G., and Khalatur, P.G., Polymer, 2018, vol. 143, pp. 200–211. https://doi.org/10.1016/j.polymer.2018.03.057

    Article  CAS  Google Scholar 

  14. Komarov, P.V., Baburkin, P.O., Ivanov, V.A., Chen, S.-A., and Khokhlov, A.R., Dokl. Phys. Chem., 2019, vol. 485, no. 1, pp. 39–42. https://doi.org/10.1134/S0012501619030011

    Article  CAS  Google Scholar 

  15. Gavrilov, A.A., Chertovich, A.V., Khalatur, P.G., and Khokhlov, A.R., Soft Matter, 2013, vol. 9, no. 15, pp. 4067–4072. https://doi.org/10.1039/C3SM27281H

    Article  CAS  Google Scholar 

  16. Komarov, P.V., Khalatur, P.G., and Khokhlov, A.R., Polym. Adv. Technol., 2021, vol. 32, no. 10, pp. 3922–3933. https://doi.org/10.1002/pat.5354

    Article  CAS  Google Scholar 

  17. Groot, R.D. and Warren, P.B., J. Chem. Phys., 1997, vol. 107, no. 11, pp. 4423–4435. https://doi.org/10.1063/1.474784

    Article  CAS  Google Scholar 

  18. Sadovnichy, V., Tikhonravov, A., Voevodin, V., and Opanasenko, V., “Lomonosov”: Supercomputing at Moscow State University, in: Contemporary High Performance Computing: From Petascale toward Exascale, Vetter, J.S., Ed., London: Chapman & Hall/CRC, 2013, pp. 283–307.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Gavrilov for the DPD simulation program. The research has been carried out using the equipment of the shared research facilities of HPC resources at Moscow State University [18]. The data postprocessing was performed using the facilities of the Interlaboratory Computer Center at Nesmeyanov Institute of Organoelement Compounds, RAS, supported by the Ministry of Science and Higher Education of the Russian Federation.

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-15-2020-794) at Nesmeyanov Institute of Organoelement Compounds, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Komarov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by G. Kirakosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komarov, P.V., Malyshev, M.D., Khalatur, P.G. et al. Self-Assembling Polymer Nanocomposites Based on Symmetric Diblock Copolymers: Mesoscopic Modeling. Dokl Phys Chem 504, 84–88 (2022). https://doi.org/10.1134/S0012501622600152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501622600152

Keywords:

Navigation