Skip to main content
Log in

The Ising model in swollen vs. compact polymers: Mean-field approach and computer simulations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the properties of the classical Ising model with nearest-neighbor interaction for spins located at the monomers of long polymer chains in 2 and 3 dimensions. We compare results for two ensembles of polymers with very different single chain properties: 1) swollen, self-avoiding linear polymer chains in good solvent conditions and 2) compact, space-filling randomly branching polymers in melt. By employing a mean-field approach and Monte Carlo computer simulations, we show that swollen polymers cannot sustain an ordered phase. On the contrary, compact polymers may indeed produce an observable phase transition. Finally, we briefly consider the statistical properties of the ordered phase by comparing polymer chains within the same universality class but characterized by very different shapes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Lenz, Phys. Z. 21, 613 (1920)

    Google Scholar 

  2. E. Ising, Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  3. S.G. Brush, Rev. Mod. Phys. 39, 883 (1967)

    Article  ADS  Google Scholar 

  4. K. Huang, Statistical Mechanics, 2nd edition (John Wiley & Sons, 1987)

  5. J.J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  6. C. Schinckus, Physica A 508, 95 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. B.K. Chakrabarti, S. Bhattacharya, J. Phys. C: Solid State Phys. 16, L1025 (1983)

    Article  ADS  Google Scholar 

  8. S. Bhattacharya, B.K. Chakrabarti, Z. Phys. B: Condens. Matter 57, 151 (1984)

    Article  ADS  Google Scholar 

  9. B.K. Chakrabarti, S. Bhattacharya, J. Phys. A: Math. Gen. 18, 1037 (1985)

    Article  ADS  Google Scholar 

  10. B.K. Chakrabarti, A.C. Maggs, R.B. Stinchcombe, J. Phys. A: Math. Gen. 18, L373 (1985)

    Article  ADS  Google Scholar 

  11. T. Garel, H. Orland, E. Orlandini, Eur. Phys. J. B 12, 261 (1999)

    Article  ADS  Google Scholar 

  12. A. Rosa, R. Everaers, J. Chem. Phys. 145, 164906 (2016)

    Article  ADS  Google Scholar 

  13. A.R. Khokhlov, S.K. Nechaev, Phys. Lett. A 112, 156 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Rubinstein, Phys. Rev. Lett. 57, 3023 (1986)

    Article  ADS  Google Scholar 

  15. S.P. Obukhov, M. Rubinstein, T. Duke, Phys. Rev. Lett. 73, 1263 (1994)

    Article  ADS  Google Scholar 

  16. A.Y. Grosberg, Soft Matter 10, 560 (2014)

    Article  ADS  Google Scholar 

  17. A. Rosa, R. Everaers, Phys. Rev. Lett. 112, 118302 (2014)

    Article  ADS  Google Scholar 

  18. A. Rosa, R. Everaers, PLOS Comput. Biol. 4, e1000153 (2008)

    Article  ADS  Google Scholar 

  19. J.D. Halverson, J. Smrek, K. Kremer, A.Y. Grosberg, Rep. Prog. Phys. 77, 022601 (2014)

    Article  ADS  Google Scholar 

  20. A. Colliva, R. Pellegrini, A. Testori, M. Caselle, Phys. Rev. E 91, 052703 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. D. Jost, P. Carrivain, G. Cavalli, C. Vaillant, Nucl. Acids Res. 42, 9553 (2014)

    Article  Google Scholar 

  22. D. Jost, Phys. Rev. E 89, 010701 (2014)

    Article  ADS  Google Scholar 

  23. J.D. Olarte-Plata, N. Haddad, C. Vaillant, D. Jost, Phys. Biol. 13, 026001 (2016)

    Article  ADS  Google Scholar 

  24. D. Jost, C. Vaillant, Nucl. Acids Res. 46, 2252 (2018)

    Article  Google Scholar 

  25. M. Aertsens, C. Vanderzande, J. Phys. A: Math. Gen. 25, 735 (1992)

    Article  ADS  Google Scholar 

  26. K.G. Wilson, Phys. Rev. B 4, 3174 (1971)

    Article  ADS  Google Scholar 

  27. K.G. Wilson, Phys. Rev. B 4, 3184 (1971)

    Article  ADS  Google Scholar 

  28. S. Ma, Modern Theory of Critical Phenomena (Benjamin London, 1976)

  29. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group (Addison-Wesley, 1992)

  30. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, New York, 2003)

  31. R. Everaers, A.Y. Grosberg, M. Rubinstein, A. Rosa, Soft Matter 13, 1223 (2017)

    Article  ADS  Google Scholar 

  32. A. Rosa, R. Everaers, Phys. Rev. E 95, 012117 (2017)

    Article  ADS  Google Scholar 

  33. A. Rosa, R. Everaers, https://doi.org/arxiv.org/abs/1808.06861 (2018)

  34. N. Madras, A.D. Sokal, J. Stat. Phys. 50, 109 (1988)

    Article  ADS  Google Scholar 

  35. A. Rosa, R. Everaers, J. Phys. A: Math. Theor. 49, 345001 (2016)

    Article  Google Scholar 

  36. W.A. Seitz, D.J. Klein, J. Chem. Phys. 75, 5190 (1981)

    Article  ADS  Google Scholar 

  37. U. Wolff, Phys. Rev. Lett. 62, 361 (1989)

    Article  ADS  Google Scholar 

  38. W. Krauth, Statistical Mechanics Algorithms and Computations (Oxford University Press, Oxford, 2006)

  39. M. Bishop, J.P.J. Michels, J. Chem. Phys. 84, 444 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papale, A., Rosa, A. The Ising model in swollen vs. compact polymers: Mean-field approach and computer simulations. Eur. Phys. J. E 41, 144 (2018). https://doi.org/10.1140/epje/i2018-11752-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11752-2

Keywords

Navigation