Skip to main content
Log in

Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Mean-field electrostatics is used to calculate the differential capacitance of an electric double layer formed at a planar electrode in a symmetric 1:1 electrolyte. Assuming the electrolyte is also ion-size symmetric, we derive analytic expressions for the differential capacitance valid up to fourth order in the surface charge density or surface potential. Our mean-field model accounts exclusively for electrostatic interactions but includes an arbitrary non-ideality in the mixing entropy of the mobile ions. The ensuing criterion for the camel-to-bell shape transition of the differential capacitance is analyzed using commonly used mixing models (one based on a lattice gas and the other based on the Carnahan-Starling equation of state) and compared with Monte Carlo simulations. We observe a reasonable agreement between all our mean-field models and the simulation data for the camel-to-bell shape transition. The absolute value of the differential capacitance for an uncharged (or weakly charged) electrode is, however, not reproduced by our mean-field approaches, not even upon introducing a Stern layer with a thickness equal of the ion radius. We show that, if a Stern layer is introduced, its thickness dependence on the ion size is non-monotonic or, depending on the salt concentration, even inversely proportional.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Israelachvili, P.M. McGuiggan, Science 241, 795 (1988)

    Article  ADS  Google Scholar 

  2. R.J. Hunter, Foundations of Colloid Science (Oxford University Press, 2001)

  3. D.F. Evans, H. Wennerström, The Colloidal Domain, Where Physics, Chemistry, and Biology Meet, second edition (VCH Publishers, 1994)

  4. A.G. Volkov, Liquid Interfaces in Chemical, Biological and Pharmaceutical Applications (CRC Press, 2001)

  5. B. Hou, W. Bu, G. Luo, P. Vanysek, M.L. Schlossman, J. Electrochem. Soc. 162, H890 (2015)

    Article  Google Scholar 

  6. F. Mugele, B. Bera, A. Cavalli, I. Siretanu, A. Maestro, M. Duits, M. Cohen-Stuart, D. van den Ende, I. Stocker, I. Collins, Sci. Rep. 5, 10519 (2015)

    Article  ADS  Google Scholar 

  7. J. Hiller, J.D. Mendelsohn, M.F. Rubner, Nat. Mater. 1, 59 (2002)

    Article  ADS  Google Scholar 

  8. B. Jönsson, A. Nonat, C. Labbez, B. Cabane, H. Wennerström, Langmuir 21, 9211 (2005)

    Article  Google Scholar 

  9. D. Ben-Yaakov, D. Andelman, R. Podgornik, D. Harries, Curr. Opin. Colloid Interface Sci. 16, 542 (2011)

    Article  Google Scholar 

  10. H. Ohshima, Sci. Technol. Adv. Mater. 10, 063001 (2009)

    Article  Google Scholar 

  11. L. Zubieta, R. Bonert, IEEE Trans. Ind. Appl. 36, 199 (2000)

    Article  Google Scholar 

  12. J.R. Miller, A.F. Burke, Electrochem. Soc. Interface 17, 53 (2008)

    Google Scholar 

  13. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science & Business Media, 2013)

  14. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  ADS  Google Scholar 

  15. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.-L. Taberna, Science 313, 1760 (2006)

    Article  ADS  Google Scholar 

  16. C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, P. Simon, J. Am. Chem. Soc. 130, 2730 (2008)

    Article  Google Scholar 

  17. J. Vatamanu, Z. Hu, D. Bedrov, C. Perez, Y. Gogotsi, J. Phys. Chem. Lett. 4, 2829 (2013)

    Article  Google Scholar 

  18. J. Huang, B.G. Sumpter, V. Meunier, Angew. Chem., Int. Ed. 47, 520 (2008)

    Article  Google Scholar 

  19. S. Kondrat, A. Kornyshev, J. Phys.: Condens. Matter 23, 022201 (2010)

    ADS  Google Scholar 

  20. R. Burt, K. Breitsprecher, B. Daffos, P.-L. Taberna, P. Simon, G. Birkett, X. Zhao, C. Holm, M. Salanne, J. Phys. Chem. Lett. 7, 4015 (2016)

    Article  Google Scholar 

  21. K. Brousse, P. Huang, S. Pinaud, M. Respaud, B. Daffos, B. Chaudret, C. Lethien, P.-L. Taberna, P. Simon, J. Power Sources 328, 520 (2016)

    Article  ADS  Google Scholar 

  22. P. Simon, Y. Gogotsi, Philos. Trans. R. Soc. A 368, 3457 (2010)

    Article  ADS  Google Scholar 

  23. O.N. Kalugin, V.V. Chaban, V.V. Loskutov, O.V. Prezhdo, Nano Lett. 8, 2126 (2008)

    Article  ADS  Google Scholar 

  24. J. Vatamanu, L. Cao, O. Borodin, D. Bedrov, G.D. Smith, J. Phys. Chem. Lett. 2, 2267 (2011)

    Article  Google Scholar 

  25. Y. He, R. Qiao, J. Vatamanu, O. Borodin, D. Bedrov, J. Huang, B.G. Sumpter, J. Phys. Chem. Lett. 7, 36 (2015)

    Article  Google Scholar 

  26. J. Vatamanu, D. Bedrov, O. Borodin, Mol. Simul. 43, 838 (2017)

    Article  Google Scholar 

  27. M.V. Fedorov, A.A. Kornyshev, Chem. Rev. 114, 2978 (2014)

    Article  Google Scholar 

  28. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219 (2014)

    Article  Google Scholar 

  29. C. Arbizzani, M. Biso, D. Cericola, M. Lazzari, F. Soavi, M. Mastragostino, J. Power Sources 185, 1575 (2008)

    Article  ADS  Google Scholar 

  30. D. Henderson, L. Blum, J. Chem. Phys. 69, 5441 (1978)

    Article  ADS  Google Scholar 

  31. D. Boda, W.R. Fawcett, D. Henderson, S. Sokołowski, J. Chem. Phys. 116, 7170 (2002)

    Article  ADS  Google Scholar 

  32. D. Henderson, S. Lamperski, Z. Jin, J. Wu, J. Phys. Chem. B 115, 12911 (2011)

    Article  Google Scholar 

  33. D. Frydel, Y. Levin, J. Chem. Phys. 137, 164703 (2012)

    Article  ADS  Google Scholar 

  34. G. Valette, J. Electroanal. Chem. Interfacial Electrochem. 122, 285 (1981)

    Article  Google Scholar 

  35. G. Valette, J. Electroanal. Chem. Interfacial Electrochem. 138, 37 (1982)

    Article  Google Scholar 

  36. M.T. Alam, M.M. Islam, T. Okajima, T. Ohsaka, Electrochem. Commun. 9, 2370 (2007)

    Article  Google Scholar 

  37. V. Lockett, M. Horne, R. Sedev, T. Rodopoulos, J. Ralston, Phys. Chem. Chem. Phys. 12, 12499 (2010)

    Article  Google Scholar 

  38. G. Guoy, J. Phys. (Paris) 9, 457 (1910)

    Google Scholar 

  39. D.L. Chapman, Philos. Mag. 25, 475 (1913)

    Article  Google Scholar 

  40. O. Stern, Z. Elektrochem. 30, 1014 (1924)

    Google Scholar 

  41. J. Bikerman, Philos. Mag. 33, 384 (1942)

    Article  Google Scholar 

  42. V. Freise, Z. Elektrochem. 56, 822 (1952)

    Google Scholar 

  43. M. Eigen, E. Wicke, J. Phys. Chem. 58, 702 (1954)

    Article  Google Scholar 

  44. I. Borukhov, D. Andelman, H. Orland, Phys. Rev. Lett. 79, 435 (1997)

    Article  ADS  Google Scholar 

  45. M.S. Kilic, M.Z. Bazant, A. Ajdari, Phys. Rev. E 75, 021502 (2007)

    Article  ADS  Google Scholar 

  46. A.A. Kornyshev, J. Phys. Chem. B 111, 5545 (2007)

    Article  Google Scholar 

  47. L. Daniels, M. Scott, Z. Mišković, J. Chem. Phys. 146, 094101 (2017)

    Article  ADS  Google Scholar 

  48. M. Gorenstein, A. Kostyuk, Y.D. Krivenko, J. Phys. G: Nucl. Part. Phys. 25, L75 (1999)

    Article  ADS  Google Scholar 

  49. G. Minton, L. Lue, Mol. Phys. 114, 2477 (2016)

    Article  ADS  Google Scholar 

  50. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  51. T. Boublík, J. Chem. Phys. 53, 471 (1970)

    Article  ADS  Google Scholar 

  52. G. Mansoori, N. Carnahan, K. Starling, T. Leland Jr., J. Chem. Phys. 54, 1523 (1971)

    Article  ADS  Google Scholar 

  53. L. Lue, N. Zoeller, D. Blankschtein, Langmuir 15, 3726 (1999)

    Article  Google Scholar 

  54. P. Biesheuvel, M. Van Soestbergen, J. Colloid Interface Sci. 316, 490 (2007)

    Article  ADS  Google Scholar 

  55. B. Giera, N. Henson, E.M. Kober, M.S. Shell, T.M. Squires, Langmuir 31, 3553 (2015)

    Article  Google Scholar 

  56. N. Gavish, K. Promislow, Eur. J. Appl. Math. 27, 667 (2016)

    Article  Google Scholar 

  57. A. Maggs, R. Podgornik, Soft Matter 12, 1219 (2016)

    Article  ADS  Google Scholar 

  58. J. López-García, J. Horno, C. Grosse, J. Colloid Interface Sci. 496, 531 (2017)

    Article  ADS  Google Scholar 

  59. D. Henderson, W. Silvestre-Alcantara, M. Kaja, S. Lamperski, J. Wu, L.B. Bhuiyan, J. Mol. Liq. 228, 236 (2017)

    Article  Google Scholar 

  60. S. Lamperski, D. Henderson, Mol. Simul. 37, 264 (2011)

    Article  Google Scholar 

  61. D. Jiang, D. Meng, J. Wu, Chem. Phys. Lett. 504, 153 (2011)

    Article  ADS  Google Scholar 

  62. M.Z. Bazant, M.S. Kilic, B.D. Storey, A. Ajdari, Adv. Colloid Interface Sci. 152, 48 (2009)

    Article  Google Scholar 

  63. M. Chen, Z.A. Goodwin, G. Feng, A.A. Kornyshev, J. Electroanal. Chem. 819, 347 (2018)

    Article  Google Scholar 

  64. Y. Nakayama, D. Andelman, J. Chem. Phys. 142, 044706 (2015)

    Article  ADS  Google Scholar 

  65. Y. Uematsu, R.R. Netz, D.J. Bonthuis, Langmuir 34, 9097 (2018)

    Article  Google Scholar 

  66. S. Lamperski, C.W. Outhwaite, L.B. Bhuiyan, J. Phys. Chem. B 113, 8925 (2009)

    Article  Google Scholar 

  67. M. Girotto, R.M. Malossi, A.P. dos Santos, Y. Levin, J. Chem. Phys. 148, 193829 (2018)

    Article  ADS  Google Scholar 

  68. K. Bohinc, G.V. Bossa, S. May, Adv. Colloid Interface Sci. 249, 220 (2017)

    Article  Google Scholar 

  69. G.V. Bossa, B.K. Berntson, S. May, Phys. Rev. Lett. 120, 215502 (2018)

    Article  ADS  Google Scholar 

  70. T.L. Hill, An Introduction to Statistical Thermodynamics (Courier Corporation, 2012)

  71. B. Jönsson, H. Wennerstroem, B. Halle, J. Phys. Chem. 84, 2179 (1980)

    Article  Google Scholar 

  72. G. Torrie, J. Valleau, J. Chem. Phys. 73, 5807 (1980)

    Article  ADS  Google Scholar 

  73. A. Martín-Molina, M. Quesada-Pérez, R. Hidalgo-Álvarez, J. Phys. Chem. B 110, 1326 (2006)

    Article  Google Scholar 

  74. S. Lamperski, A. Zydor, Electrochim. Acta 52, 2429 (2007)

    Article  Google Scholar 

  75. D.L.Z. Caetano, G.V. Bossa, V.M. de Oliveira, M.A. Brown, S.J. de Carvalho, S. May, Phys. Chem. Chem. Phys. 18, 27796 (2016)

    Article  Google Scholar 

  76. D.L.Z. Caetano, G.V. Bossa, V.M. de Oliveira, M.A. Brown, S.J. de Carvalho, S. May, Phys. Chem. Chem. Phys. 19, 23971 (2017)

    Article  Google Scholar 

  77. M.A. Brown, G.V. Bossa, S. May, Langmuir 31, 11477 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvio May.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossa, G.V., Caetano, D.L.Z., de Carvalho, S.J. et al. Modeling the camel-to-bell shape transition of the differential capacitance using mean-field theory and Monte Carlo simulations. Eur. Phys. J. E 41, 113 (2018). https://doi.org/10.1140/epje/i2018-11723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11723-7

Keywords

Navigation