Skip to main content

Advertisement

SpringerLink
  1. Home
  2. The European Physical Journal E
  3. Article
A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Buckling of filamentous actin bundles in filopodial protrusions

27 February 2019

Yanzhong Wang & Jin Qian

Varying crosslinking motifs drive the mesoscale mechanics of actin-microtubule composites

06 September 2019

Shea N. Ricketts, Madison L. Francis, … Rae M. Robertson-Anderson

Mechanochemical coupling of formin-induced actin interaction at the level of single molecular complex

21 January 2020

Zhenhai Li, Hyunjung Lee, … Larry V. McIntire

F-actin bending facilitates net actomyosin contraction By inhibiting expansion with plus-end-located myosin motors

04 July 2022

Alexander K. Y. Tam, Alex Mogilner & Dietmar B. Oelz

The dynamics of actin network turnover is self-organized by a growth-depletion feedback

10 April 2020

P. Bleicher, A. Sciortino & A. R. Bausch

Mechanisms of formin-mediated actin assembly and dynamics

03 November 2018

Naomi Courtemanche

Helical structure of actin stress fibers and its possible contribution to inducing their direction-selective disassembly upon cell shortening

23 September 2019

Tatsuki Okamoto, Tsubasa S. Matsui, … Shinji Deguchi

Capturing 3D large-strain Euler-bending filament dynamics in fibrous media simulations; sample case of compression collapse in dendritic actin network

08 March 2019

Jyothirmai J. Simhadri & Preethi L. Chandran

From solution to surface to filament: actin flux into branched networks

23 November 2018

R. Dyche Mullins, Peter Bieling & Daniel A. Fletcher

Download PDF
  • Regular Article
  • Open Access
  • Published: 27 May 2015

A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network

  • M. Maier1,
  • K. W. Müller2,
  • C. Heussinger3,
  • S. Köhler4,
  • W. A. Wall2,
  • A. R. Bausch1 &
  • …
  • O. Lieleg5 

The European Physical Journal E volume 38, Article number: 50 (2015) Cite this article

  • 962 Accesses

  • 9 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

Graphical abstract

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. A.J. Ridley, Cell 145, 1012 (2011).

    Article  Google Scholar 

  2. D.A. Head, A.J. Levine, F.C. MacKintosh, Phys. Rev. E 68, 061907 (2003).

    Article  ADS  Google Scholar 

  3. K.E. Kasza, A.C. Rowat, J.Y. Liu, T.E. Angelini, C.P. Brangwynne et al., Curr. Opin. Cell Biol. 19, 101 (2007).

    Article  Google Scholar 

  4. K.E. Kasza, G.H. Koenderink, Y.C. Lin, C.P. Broedersz, W. Messner et al., Phys. Rev. E 79, 041928 (2009).

    Article  ADS  Google Scholar 

  5. O. Lieleg, M.M.A.E. Claessens, A.R. Bausch, Soft Matter 6, 218 (2010).

    Article  ADS  Google Scholar 

  6. J.M. Tse, G. Cheng, J.A. Tyrrell, S.A. Wilcox-Adelman, Y. Boucher et al., Proc. Natl. Acad. Sci. U.S.A. 109, 911 (2012).

    Article  ADS  Google Scholar 

  7. J. Faix, K. Rottner, Curr. Opin. Cell Biol. 18, 18 (2006).

    Article  Google Scholar 

  8. P.K. Mattila, P. Lappalainen, Nat. Rev. Mol. Cell Biology 9, 446 (2008).

    Article  Google Scholar 

  9. M. Claessens, M. Bathe, E. Frey, A.R. Bausch, Nat. Mater. 5, 748 (2006).

    Article  ADS  Google Scholar 

  10. M. Claessens, C. Semmrich, L. Ramos, A.R. Bausch, Proc. Natl. Acad. Sci. U.S.A. 105, 8819 (2008).

    Article  ADS  Google Scholar 

  11. Y.S. Aratyn, T.E. Schaus, E.W. Taylor, G.G. Borisy, Mol. Biol. Cell 18, 3928 (2007).

    Article  Google Scholar 

  12. N. Kureishy, V. Sapountzi, S. Prag, N. Anilkumar, J.C. Adams, BioEssays 24, 350 (2002).

    Article  Google Scholar 

  13. D. Vignjevic, M. Schoumacher, N. Gavert, K.P. Janssen, G. Jih et al., Cancer Res. 67, 6844 (2007).

    Article  Google Scholar 

  14. A. Li, J.C. Dawson, M. Forero-Vargas, H.J. Spence, X.Z. Yu et al., Curr. Biol. 20, 339 (2010).

    Article  Google Scholar 

  15. A.U. Jawhari, A. Buda, M. Jenkins, K. Shehzad, C. Sarraf et al., Am. J. Pathol. 162, 69 (2003).

    Article  Google Scholar 

  16. J. Zanet, A. Jayo, S. Plaza, T. Millard, M. Parsons et al., J. Cell Biol. 197, 477 (2012).

    Article  Google Scholar 

  17. S. Ono, Y. Yamakita, S. Yamashiro, P.T. Matsudaira, J.R. Gnarra et al., J. Biol. Chem. 272, 2527 (1997).

    Article  Google Scholar 

  18. D. Vignjevic, S. Kojima, T. Svitkina, G.G. Borisy, J. Cell Biol. 174, 863 (2006).

    Article  Google Scholar 

  19. S. Jansen, A. Collins, C.S. Yang, G. Rebowski, T. Svitkina et al., J. Biol. Chem. 286, 30087 (2011).

    Article  Google Scholar 

  20. S.Y. Yang, F.K. Huang, J.Y. Huang, S. Chen, J. Jakoncic et al., J. Biol. Chem. 288, 274 (2013).

    Article  Google Scholar 

  21. J.A. Spudich, S. Watt, J. Biol. Chem. 246, 4866 (1971).

    Google Scholar 

  22. D. Vignjevic, D. Yarar, M.D. Welch, J. Peloquin, T. Svitkina et al., J. Cell Biol. 160, 951 (2003).

    Article  Google Scholar 

  23. C. Semmrich, R.J. Larsen, A.R. Bausch, Soft Matter 4, 1675 (2008).

    Article  ADS  Google Scholar 

  24. C.J. Cyron, W.A. Wall, Int. J. Num. Meth. Engin. 90, 955 (2012).

    MATH  MathSciNet  Google Scholar 

  25. C.J. Cyron, K.W. Müller, A.R. Bausch, W.A. Wall, J. Comput. Phys. 244, 236 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  26. C.J. Cyron, K.W. Müller, K.M. Schmoller, A.R. Bausch, W.A. Wall et al., EPL 102, 38003 (2013).

    Article  ADS  Google Scholar 

  27. K.W. Muller, R.F. Bruinsma, O. Lieleg, A.R. Bausch, W.A. Wall et al., Phys. Rev. Lett. 112, 238102 (2014).

    Article  ADS  Google Scholar 

  28. C.J. Cyron, W.A. Wall, Phys. Rev. E 80, 066704 (2009).

    Article  ADS  Google Scholar 

  29. C.J. Cyron, W.A. Wall, Phys. Rev. E 82, 066705 (2010).

    Article  ADS  Google Scholar 

  30. G.I. Bell, Science 200, 618 (1978).

    Article  ADS  Google Scholar 

  31. O. Lieleg, M. Claessens, C. Heussinger, E. Frey, A.R. Bausch, Phys. Rev. Lett. 99, 088102 (2007).

    Article  ADS  Google Scholar 

  32. O. Lieleg, A.R. Bausch, Phys. Rev. Lett. 99, 158105 (2007).

    Article  ADS  Google Scholar 

  33. R. Tharmann, M. Claessens, A.R. Bausch, Phys. Rev. Lett. 98, 088103 (2007).

    Article  ADS  Google Scholar 

  34. O. Lieleg, K.M. Schmoller, M.M.A.E. Claessens, A.R. Bausch, Biophys. J. 96, 4725 (2009).

    Article  ADS  Google Scholar 

  35. C. Heussinger, M. Bathe, E. Frey, Phys. Rev. Lett. 99, 048101 (2007).

    Article  ADS  Google Scholar 

  36. L. Wolff, K. Kroy, Phys. Rev. E 86, 040901 (2012).

    Article  ADS  Google Scholar 

  37. L. Wolff, P. Fernandez, K. Kroy, Plos One 7, e40063 (2012).

    Article  ADS  Google Scholar 

  38. C. Heussinger, New J. Phys. 14, 095029 (2012).

    Article  ADS  Google Scholar 

  39. C. Heussinger, E. Frey, Phys. Rev. Lett. 97, 105501 (2006).

    Article  ADS  Google Scholar 

  40. S.M. Ward, A. Weins, M.R. Pollak, D.A. Weitz, Biophys. J. 95, 4915 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Lehrstuhl für Zellbiophysik E27, Physik-Department, Technische Universität München, Garching, Germany

    M. Maier & A. R. Bausch

  2. Institute for Computational Mechanics, Department of Mechanical Engineering, Technische Universität München, Garching, Germany

    K. W. Müller & W. A. Wall

  3. Institute for Theoretical Physics, Universität Göttingen, Göttingen, Germany

    C. Heussinger

  4. Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA

    S. Köhler

  5. Institute of Medical Engineering IMETUM and Department of Mechanical Engineering, Technische Universität München, Garching, Germany

    O. Lieleg

Authors
  1. M. Maier
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. W. Müller
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. C. Heussinger
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Köhler
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. W. A. Wall
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. A. R. Bausch
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. O. Lieleg
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to O. Lieleg.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

Supplementary material, approximately 228 KB.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maier, M., Müller, K.W., Heussinger, C. et al. A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network. Eur. Phys. J. E 38, 50 (2015). https://doi.org/10.1140/epje/i2015-15050-3

Download citation

  • Received: 23 January 2015

  • Revised: 12 March 2015

  • Accepted: 02 April 2015

  • Published: 27 May 2015

  • DOI: https://doi.org/10.1140/epje/i2015-15050-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Soft Matter: Polymers and Polyelectrolytes
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.