Skip to main content
Log in

Numerical study of laminar, standing hydraulic jumps in a planar geometry

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Vigneswaran, C. Visvanathan Water Treatment Processes: Simple Options (CRC Press, 1995).

  2. W.H. Hager, Energy Dissipators and Hydraulic Jump (Water Science and Tech. Lib., Kluwer Academic Publishers, 1992).

  3. L. Rayleigh, Proc. R. Soc. London Ser. A. 90, 324 (1914).

    Article  ADS  MATH  Google Scholar 

  4. I. Tani, J. Phys. Soc. Japan 4, 212 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  5. T. Bohr, P. Dimon, V. Putkaradze, J. Fluid Mech. 254, 635 (1993).

    Article  ADS  MATH  Google Scholar 

  6. S.B. Singha, J.K. Bhattacharya, A.K. Ray, Eur. Phys. J. B 48, 417 (2005).

    Article  ADS  Google Scholar 

  7. S. Watanabe, V. Putkaradze, T. Bohr, J. Fluid Mech. 480, 233 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. D. Bonn, A. Anderson, T. Bohr, J. Fluid Mech. 618, 71 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. E.J. Watson, J. Fluid Mech. 20, 481 (1964).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. J.W.M. Bush, J. Aristoff, J. Fluid Mech. 489, 229 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  11. A.R. Kasimov, J. Fluid Mech. 601, 189 (2008).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. J. Gajjar, F.T. Smith, Mathematika 30, 77 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  13. A.D.D. Craik, R.C. Latham, M.J. Fawkes, P.W.F. Gribbon, J. Fluid Mech. 112, 347 (1981).

    Article  ADS  Google Scholar 

  14. R.V. Brotherton-Ratcliffe, PhD Thesis, University College London (1987).

  15. R.I. Bowles, F.T. Smith, J. Fluid Mech. 242, 145 (1992).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. F.J. Higuera, J. Fluid Mech. 274, 69 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. M.M. Rahman, A. Faghri, W.L. Hankey, J. Fluids Eng. 113, 411 (1991).

    Article  Google Scholar 

  18. S. Chippada, B. Ramaswamy, M.F. Wheeler, Int. J. Num. Methods Eng. 37, 1381 (1994).

    Article  MATH  Google Scholar 

  19. K. Yokoi, F. Xiao, Phys. Lett. A 257, 153 (1999).

    Article  ADS  Google Scholar 

  20. V.G. Ferreira, M.F. Tome, N. Mangiavacchi, A. Castelo, J.A. Cuminato, A.O. Fortuna, S. McKee, Int. J. Num. Methods Fluids 39, 549 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. M. Passandideh-Fard, A.R. Teymourtash, M. Khavari, J. Fluids Eng. 133, 014401 (2011).

    Article  Google Scholar 

  22. W.G. Pritchard, L.R. Scott, S.J. Tavener, Philos. Trans. R Soc. 340, 1 (1992).

    Article  ADS  MATH  Google Scholar 

  23. S. Ramadurgam, R.V.K. Chakravarthy, G. Tomar, R. Govindarajan, Phys. Fluids 24, 102109 (2012).

    Article  ADS  Google Scholar 

  24. B.A. Wols, Undular Hydraulic Jumps (Delft University of Technology, 2005).

  25. I. Ohtsu, Y. Yasuda, H. Gotoh, J. Hydr. Eng. 129, 948 (2003).

    Article  Google Scholar 

  26. T.B. Benjamin, M.J. Lighthill, Proc. R. Soc. London, Ser. A 224, 448 (1954).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. W. Chester, J. Fluid Mech. 24, 367 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  28. M. David Holland, Rodolfo R. Rosales, Dan Stefanica, Esteban G. Tabak, J. Fluid Mech. 470, 63 (2002).

    ADS  MATH  MathSciNet  Google Scholar 

  29. D. Long, P.M. Steffler, N. Rajaratnam, J. Hydr. Res. 29, 293 (1991).

    Article  Google Scholar 

  30. L. Quingchao, U. Drewes, J. Hyd. Res. 32, 877 (1994).

    Article  Google Scholar 

  31. A.M. Kamchatnov, Y.-H. Kuo, T.-C. Lin, T.-L. Horng, S.-C. Gou, R. Clift, R.H.J. Grimshaw, J. Fluid Mech. 736, 495 (2013).

    Article  MATH  Google Scholar 

  32. S. Popinet, J. Comput. Phys. 190, 572 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. S. Popinet, J. Comput. Phys. 228, 5838 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. J. Bell, P. Colella, H. Glaz, J. Comput. Phys. 85, 257 (1989).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. J. Li, C.R. Acad. Sci. Paris, Sér. IIb 320, 391 (1995).

    MATH  Google Scholar 

  36. E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, J. Comput. Phys. 225, 2301 (2007).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. M.M. Francois, S.J. Cummins, E.D. Dendy, D.B. Kothe, J.M. Sicilian, M.W. Williams, J. Comput. Phys. 213, 141 (2006).

    Article  ADS  MATH  Google Scholar 

  38. G. Tomar, D. Fuster, S. Popinet, S. Zaleski, Comput. Fluids 39, 1864 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  39. R. Dasgupta, R. Govindarajan, Phys. Fluids 22, 112108 (2010).

    Article  ADS  Google Scholar 

  40. H. Chanson, Eur. J. Mech. B Fluids 28, 191 (2009).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. C.T. Avedesian, Z. Zhao, Proc. R. Soc. London, Ser. A 456, 2127 (2000).

    Article  ADS  Google Scholar 

  42. H. Favre, Etude theorique et experimental des ondes de translation dans les canaux descouverts (Dunod, Paris, 1935).

  43. A.M. Binnie, J.C. Orkney, Proc. R. Soc. London Ser. A 230, 237 (1955).

    Article  ADS  Google Scholar 

  44. B. Sturtevant, Phys. Fluids 8, 1052 (1965).

    Article  ADS  Google Scholar 

  45. G.H. Keulegan, G.W. Patterson, J. Res. Nat. Bureau Standards 24, 47 (1940).

    Article  MathSciNet  Google Scholar 

  46. L. Debnath, Nonlinear Water Waves (Academic Press, 1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Tomar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, R., Tomar, G. & Govindarajan, R. Numerical study of laminar, standing hydraulic jumps in a planar geometry. Eur. Phys. J. E 38, 45 (2015). https://doi.org/10.1140/epje/i2015-15045-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2015-15045-0

Keywords

Navigation