Skip to main content
Log in

The role of a diamondoid as a hydrogen donor or acceptor in probing DNA nucleobases

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

It has been shown that diamondoids can interact with DNA by forming relatively strong hydrogen bonds to DNA units, such as nucleobases. For this interaction to occur the diamondoids must be chemically modified in order to provide donor/acceptor groups for the hydrogen bond. We show here that the exact arrangement of an amine-modified adamantane with respect to a neighboring nucleobase has a significant influence on the strength of the hydrogen bond. Whether the diamondoid acts as a hydrogen donor or acceptor in the hydrogen binding to the nucleobase affects the electronic structure and thereby the electronic band-gaps of the diamondoid-nucleobase complex. In a donor arrangement of the diamondoid close to a nucleobase, the interaction energies are weak, but the electronic band-gaps differ significantly. Exactly the opposite trend is observed in an acceptor arrangement of the diamondoid. In each of these cases the frontier orbitals of the diamondoid and the nucleobase play a different role in the binding. The results are discussed in view of a diamondoid-based biosensing device.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.E. Dahl, S.G. Liu, R.M.K. Carlson, Science 299, 96 (2003)

    Article  ADS  Google Scholar 

  2. M.A. Gunawan et al., New. J. Chem. 38, 28 (2014)

    Article  Google Scholar 

  3. H. Schwertfeger, A.A. Fokin, P.R. Schreiner, Angew. Chem. Int. Ed. Engl. 47, 1022 (2008)

    Article  Google Scholar 

  4. W.L. Yang et al., Science 316, 1460 (2007)

    Article  ADS  Google Scholar 

  5. Y. Wang, E. Kioupakis, X. Lu, D. Wegner, R. Yamachika, J.E. Dahl, R.M.K. Carlson, S.G. Louie, M.F. Crommie, Nat. Mater. 7, 38 (2008)

    Article  ADS  Google Scholar 

  6. G. Zhang, Phys. Today 66, 59 (2013)

    Article  Google Scholar 

  7. G.A. Mansoori, P.L.B. de Araujo, E.S. de Araujo (Editors), Diamondoid Molecules: With Applications in Biomedicine, Materials Science, Nanotechnology & Petroleum Science (World Scientific Pub. Co., 2012)

  8. G.C. McIntosh, M. Yoon, S. Berber, D. Tománek, Phys. Rev. B 70, 045401 (2004)

    Article  ADS  Google Scholar 

  9. A.A. Spasov, T.V. Khamidova, L.I. Bugaeva, I. Morozov, Pharm. Chem. J. 34, 1 (2000)

    Article  Google Scholar 

  10. H. Huang, E. Pierstorff, E. Osawa, D. Ho, Nano. Lett. 7, 3305 (2007)

    Article  ADS  Google Scholar 

  11. A.L. Stouffer et al., Nature 451, 596 (2008)

    Article  ADS  Google Scholar 

  12. L. Wanka, K. Iqbal, P.R. Schreiner, Chem. Rev. 113, 3516 (2013)

    Article  Google Scholar 

  13. J.R. Schnell, J.J. Chou, Nature 451, 591 (2008)

    Article  ADS  Google Scholar 

  14. W.J. Geldenhuys, S.F. Malan, J.R. Bloomquist, A.P. Marchand, C.J.V. der Schyf, Med. Res. Rev. 25, 21 (2005)

    Article  Google Scholar 

  15. Y. Xue, G.A. Mansoori, Int. J. Nanosci. 7, 63 (2008)

    Article  Google Scholar 

  16. N.D. Drummond, A.J. Williamson, R.J. Needs, G. Galli, Phys. Rev. Lett. 95, 096801 (2008)

    Article  ADS  Google Scholar 

  17. S. Roth et al., Chem. Phys. Lett. 495, 102 (2010)

    Article  ADS  Google Scholar 

  18. L. Landt, K. Klünder, J.E. Dahl, R.M.K. Carlson, T. Möller, C. Bostedt, Phys. Rev. Lett. 103, 047702 (2009)

    Article  ADS  Google Scholar 

  19. A.A. Fokin et al., Org. Lett. 11, 3068 (2009)

    Article  Google Scholar 

  20. M. Vörös, T. Demjén, T. Scilvási, A. Gali, Phys. Rev. Lett. 108, 267401 (2012)

    Article  ADS  Google Scholar 

  21. A.A. Fokin, P.R. Schreiner, Mol. Phys. 107, 823 (2009)

    Article  ADS  Google Scholar 

  22. T. Rander et al., J. Chem. Phys. 138, 024310 (2013)

    Article  ADS  Google Scholar 

  23. L. Landt et al., J. Chem. Phys. 132, 144305 (2010)

    Article  ADS  Google Scholar 

  24. L. Landt et al., J. Chem. Phys. 132, 024710 (2010)

    Article  ADS  Google Scholar 

  25. Y. Xue, G.A. Mansoori, Int. J. Mol. Sci. 11, 288 (2010)

    Article  Google Scholar 

  26. Y. Wang, B.A. Tkatchenko, P.R. Schreiner, A. Marx, Org. Biomol. Chem. 9, 7482 (2011)

    Article  Google Scholar 

  27. J.B. Crumpton, W.L. Santos, Chem. Commun. 48, 2018 (2012)

    Article  Google Scholar 

  28. H. Ramezani, M.R. Saberi, G.A. Mansoori, Int. J. Nanosci. Nanotechnol 3, 21 (2007)

    Google Scholar 

  29. G. Sivaraman, M. Fyta, Nanoscale 6, 4225 (2014)

    Article  ADS  Google Scholar 

  30. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  31. K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101(R) (2010)

    Article  ADS  Google Scholar 

  32. J. Klimeš, A. Michaelides, J. Chem. Phys. 137, 120901 (2012)

    Article  ADS  Google Scholar 

  33. J. Junquera, O. Paz, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)

    Article  ADS  Google Scholar 

  34. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  35. J. Sponer, P. Jurečka, P. Hobza, J. Am. Chem. Soc. 126, 10142 (2004)

    Article  Google Scholar 

  36. S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)

    Article  ADS  Google Scholar 

  37. G.A. Jeffrey, An Introduction to Hydrogen Bonding, in Topics in Physical Chemistry (Oxford University Press, 1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fyta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

C. Maier, F., Sivaraman, G. & Fyta, M. The role of a diamondoid as a hydrogen donor or acceptor in probing DNA nucleobases. Eur. Phys. J. E 37, 95 (2014). https://doi.org/10.1140/epje/i2014-14095-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14095-0

Keywords

Navigation