Skip to main content
Log in

Impact of the timestep in some molecular dynamics simulations on compression of granular systems

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We conduct two-dimensional molecular dynamics simulations to study the statistical distribution of the force-moment (defined as stress multiplied by volume) of static granular packings under external isotropic compression. To that end, we generate packings by compressing initially ordered lattices using irregular, randomly generated, walls. Velocity-Verlet algorithm and linear spring-dashpot interactions are employed. With this specific method, the obtained statistical distributions of the force-moment are similar for different initial packings. However they depend on the timestep selection within a range of values. This shows that inadequate molecular dynamic simulations may provide different classes of solutions for the same physical process, and this could cause problems to validate theoretical approaches based on statistical mechanics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Jaeger, S.R. Nagel, Rev. Mod. Phys. 68, 1259 (1996).

    Article  ADS  Google Scholar 

  2. P.G. de Gennes, Physica A 261, 267 (1998).

    Article  Google Scholar 

  3. H.J. Herrmann, Physica A 313, 188 (2002).

    Article  ADS  MATH  Google Scholar 

  4. J.D. Bernal, J. Mason, Nature 188, 910 (1960).

    Article  ADS  Google Scholar 

  5. S. Torquato, F.H. Stillinger, Rev. Mod. Phys. 82, 2633 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. C.H. Liu, S.R. Nagel, D.A. Schecter, S.N. Coppersmith, S. Majumdar, O. Narayan, T.A. Witten, Science 269, 513 (1995).

    Article  ADS  Google Scholar 

  7. T.S. Majmudar, R.P. Behringer, Nature 435, 1079 (2005).

    Article  ADS  Google Scholar 

  8. D.M. Mueth, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 57, 3164 (1998).

    Article  ADS  Google Scholar 

  9. F. Radjai, M. Jean, J.-J. Moreau, S. Roux, Phys. Rev. Let. 77, 274 (1996).

    Article  ADS  Google Scholar 

  10. S. Luding, Phys. Rev. E 55, 4720 (1997).

    Article  ADS  Google Scholar 

  11. J.H. Snoeijer, T.J.H. Vlugt, M. van Hecke, J. van Saarloos, Phys. Rev. Lett. 92, 054302 (2004).

    Article  ADS  Google Scholar 

  12. J.H. Snoeijer, T.J.H. Vlugt, W.G. Ellenbroek, M. van Hecke, J.M.J. van Leeuwen, Phys. Rev. E 70, 061306 (2004).

    Article  ADS  Google Scholar 

  13. J.H. Snoeijer, W.G. Ellenbroek, T.J.H. Vlugt, M. van Hecke, Phys. Rev. Lett. 96, 098001 (2006).

    Article  ADS  Google Scholar 

  14. B.P. Tighe, A.R.T. van Eerd, T.J.H. Vlugt, Phys. Rev. Lett. 100, 238001 (2008).

    Article  ADS  Google Scholar 

  15. S. Henkes, C.S.O. Hern, B. Chakraborty, Phys. Rev. Lett. 99, 038002 (2007).

    Article  ADS  Google Scholar 

  16. S. Henkes, B. Chakraborty, Phys. Rev. E 79, 061301 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Edwards, R. Oakeshott, Physica A 157, 1080 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Edwards, Physica A 353, 114 (2005).

    Article  ADS  Google Scholar 

  19. M.P. Ciamarra, P. Richard, M. Schroter, B.P. Tighe, Soft Matter 8, 9731 (2012).

    Article  ADS  Google Scholar 

  20. D. Frenkel, Eur. Phys. J. Plus 128, 1 (2013).

    Article  MathSciNet  Google Scholar 

  21. I.G. Tejada, R. Jimenez, Engin. Comput. 30, 301 (2013).

    Article  Google Scholar 

  22. D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edition (Cambridge University Press, 2004).

  23. B.J. Alder, T.E. Wainwright, J. Chem. Phys. 31, 459 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Rahman, Phys. Rev. 136, A405 (1964).

    Article  ADS  Google Scholar 

  25. P.A. Cundall, O.D.L. Strack, Geotechnique 29, 47 (1979).

    Article  Google Scholar 

  26. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  27. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982).

    Article  ADS  Google Scholar 

  28. C. O’Sullivan, J.D. Bray, Engin. Comput. 21, 278 (2007).

    Article  Google Scholar 

  29. A. Peña, P. Lind, S. McNamara, H. Herrmann, Acta Mech. 205, 171 (2009).

    Article  MATH  Google Scholar 

  30. C.S. Campbell, J. Fluid Mech. 465, 261 (2002).

    ADS  MATH  MathSciNet  Google Scholar 

  31. L. Aarons, S. Sundaresan, Powder Technol. 169, 10 (2006).

    Article  Google Scholar 

  32. S.J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  ADS  MATH  Google Scholar 

  33. S. Luding, in Physics of Dry Granular Media, edited by H. Herrmann, J.-P. Hovi, S. Luding, Vol. 350 of NATO ASI Series (Springer, The Netherlands, 1998) pp. 285--304.

  34. L.E. Silbert, D. Ertaş, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Phys. Rev. E 64, 051302 (2001).

    Article  ADS  Google Scholar 

  35. J.W. Landry, G.S. Grest, L.E. Silbert, S.J. Plimpton, Phys. Rev. E 67, 041303 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio G. Tejada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tejada, I.G., Jimenez, R. Impact of the timestep in some molecular dynamics simulations on compression of granular systems. Eur. Phys. J. E 37, 15 (2014). https://doi.org/10.1140/epje/i2014-14015-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14015-4

Keywords

Navigation