Skip to main content
Log in

Structure property correlation in lithium borophosphate glasses

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

To investigate the influence of cation mobility variation due to the mixed glass former effect, 0.45Li2O-(0.55 − x) P2O5x B2O3 glasses (0 ≤; x ≤ 0.55) are studied keeping the molar ratio of Li2O/(P2O5 + B2O3) constant. Addition of B2O3 into lithium phosphate glasses increases the glass transition temperature (T g) and number density, decreases the molar volume, and generally renders the glasses more fragile. The glass system has been characterised experimentally by XRD, XPS and impedance studies and studied computationally by constant volume molecular dynamics (MD) simulations and bond valence (BV) method to identify the structural variation with increasing the B2O3 content, its consequence for Li+ ion mobility, as well as the distribution of bridging and non-bridging oxygen atoms. These studies indicate the increase of P-O-B bonds (up to Y = [B2O3]/([B2O3] + [P2O5]) ≈ 0.5 and B-O-B bonds, as well as the decrease of P-O-P bonds and non-bridging oxygens (NBOs) with rising B2O3 content. The system with Y ≈ 0.5 exhibits maximum ionic conductivity, 1.0 × 10−7 S cm−1, with activation energy 0.63 V. Findings are rationalised by a model of structure evolution with varying B2O3 content Y and an empirical model quantifying the effect of the various structural building blocks on the ionic conductivity in this mixed glass former system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.V.R. Chowdari, K. Radhakrishnan, J. Non-Cryst. Solids 108, 323 (1989)

    Article  ADS  Google Scholar 

  2. A. Magistris, G. Chiodelli, M. Villa, J. Power Sources 14, 87 (1985)

    Article  ADS  Google Scholar 

  3. R.V. Salodkar, V.K. Deshpande, K. Singh, J. Power Sources 25, 257 (1989)

    Article  ADS  Google Scholar 

  4. B.K. Money, K. Hariharan, Solids State Ionics 179, 1273 (2008)

    Article  Google Scholar 

  5. F. Munoz, L. Montagne, L. Pascual, A. Duran, J. Non-Cryst. Solids 355, 2571 (2009)

    Article  ADS  Google Scholar 

  6. Y.H. Yun, P.J. Bray, J. Non-Cryst. Solids 30, 45 (1978)

    Article  ADS  Google Scholar 

  7. T. Feng, P. Linzhang, J. Non-Cryst. Solids 112, 142 (1989)

    Article  ADS  Google Scholar 

  8. S. Kumar, P. Vinatier, A. Levasseur, K.J. Rao, J. Solid State Chem. 177, 1723 (2004)

    Article  ADS  Google Scholar 

  9. M. Scagliotti, M. Villa, G. Chiodelli, J. Non-Cryst. Solids 93, 350 (1987)

    Article  ADS  Google Scholar 

  10. J. Yifen, C. Xiangsheng, H. Xihuai, J. Non-Cryst. Solids 112, 147 (1989)

    Article  Google Scholar 

  11. L. Koudelka, P. Mosner, J. Non-Cryst. Solids 293-295, 635 (2001)

    Article  ADS  Google Scholar 

  12. T. Tsuchiya, T. Moriya, J. Non-Cryst. Solids 38-39, 323 (1980)

    Article  ADS  Google Scholar 

  13. G. Chiodelli, A. Magistris, M. Villa, Solid State Ionics 18-19, 356 (1986)

    Article  Google Scholar 

  14. R. Gresch, W. Muller-Warmuth, H. Dutz, J. Non-Cryst. Solids 34, 127 (1979)

    Article  ADS  Google Scholar 

  15. E.C. Onyiriuka, J. Non-Cryst. Solids 163, 268 (1993)

    Article  ADS  Google Scholar 

  16. R.K. Brow, J. Non-Cryst. Solids 194, 267 (1996)

    Article  ADS  Google Scholar 

  17. P.Y. Shih, Mater. Chem. Phys. 84, 151 (2004)

    Article  Google Scholar 

  18. A. Hayashi, M. Nakai, M. Tatsumisago, T. Minami, C. R. Chimie 5, 751 (2002)

    Article  Google Scholar 

  19. V. Nazabal, E. Fargin, C. Labrugere, G.L. Flem, J. Non-Cryst. Solids 270, 223 (2000)

    Article  ADS  Google Scholar 

  20. T. Duc Tho, R. Prasada Rao, S. Adams, Phys. Chem. Glasses - Eur. J. Glass Sci. Techn. B 52, 91 (2011)

    Google Scholar 

  21. T.D. Tho, P. Rao Rayavarapu, S. Adams, ECS Trans. 28, 57 (2010)

    Article  Google Scholar 

  22. J.-M. Delaye, D. Ghaleb, J. Non-Cryst. Solids 195, 239 (1996)

    Article  ADS  Google Scholar 

  23. J.-M. Delaye, D. Ghaleb, Phys. Rev. B 61, 14481 (2000)

    Article  ADS  Google Scholar 

  24. W. Li, S.H. Garofalini, Solid State Ionics 166, 365 (2004)

    Article  Google Scholar 

  25. I.D. Brown, The chemical bond in inorganic chemistry the band valence model (Oxford University Press, New York, 2002)

  26. S. Adams, R. Prasada Rao, Phys. Chem. Chem. Phys. 11, 3210 (2009)

    Article  Google Scholar 

  27. S. Adams, Acta Crystallogr. B, Struct. Sci. 57, 278 (2001)

    Article  Google Scholar 

  28. S. Adams, Bull. Mat. Sci. 29, 587 (2006)

    Article  Google Scholar 

  29. S. Adams, J. Swenson, Phys. Chem. Chem. Phys. 4, 3179 (2002)

    Article  Google Scholar 

  30. R. Prasada Rao, T.D. Tho, S. Adams, Solid State Ionics 181, 1 (2010)

    Article  Google Scholar 

  31. J.R. Van Wazer, Phosphorus and its Compounds, Vol. 1 (Interscience, New York, 1958)

  32. Y.H. Yun, P.J. Bray, J. Non-Cryst. Solids 44, 227 (1981)

    Article  ADS  Google Scholar 

  33. K. Muruganandam, M. Seshasayee, S. Patnaik, Solid State Ionics 89, 313 (1996)

    Article  Google Scholar 

  34. W. Soppe, C.V.D. Marel, H.W.D. Hartog, J. Non-Cryst. Solids 101, 101 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tho, T.D., Prasada Rao, R. & Adams, S. Structure property correlation in lithium borophosphate glasses. Eur. Phys. J. E 35, 8 (2012). https://doi.org/10.1140/epje/i2012-12008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12008-y

Keywords

Navigation