Skip to main content

Advertisement

Log in

Structural, electric and dielectric studies on Er3+/Yb3+ co-doped zinc phosphate glasses

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

(42.25-x)Na2O + (42.25-x)P2O5 + 15ZnO + 0.5Er2O3 + xYb2O3 with (x = 0, 0.5,1, and 1.5%) were processed using the melt quenching method. DSC is used to control the stability of the glass. XRD patterns and Raman analysis were performed to understand the structure of the glass samples. The impedance spectra were analyzed in terms of an equivalent circuit involving bulk resistor (Rb) and bulk constant phase elements (CPEb). The ac-conductivity analysis was used to evaluate the effect of increasing the percentage of Yb2O3in the glass. Our findings prove that the relaxation time decreases with rising temperature, as well as the average value of the activation energy was in the order of 0.97 eV, which leads to an increase in the ionic conductivity. An improvement in ionic conductivity was demonstrated with the incorporation of Er2O3 and Yb2O3contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Soltani, I., Hraiech, S., Horchani-Naifer, K., Ferid, M.: Effects of silver nanoparticles on the enhancement of up conversion and infrared emission in Er3+/Yb3+ co-doped phosphate glasses. Opt. Mater. 77, 161–169 (2018)

    Article  CAS  Google Scholar 

  2. Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H., Gelloz, B., Ferid, M.: Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticl. J. Alloy. Compd. 686, 556–563 (2016)

    Article  CAS  Google Scholar 

  3. Florez, A., Ulloa, E.M., Cabanzo, R.: Optical properties of Nd3+ and Er3+ ions in fluoro-phosphate glasses: Effects of P2O5 concentration and laser applications. J. Alloy. Compd. 488, 606–611 (1990)

    Article  CAS  Google Scholar 

  4. Knowles, J.C.: Phosphate based glasses for biomedical applications. J. Mater. Chem. 13, 2395–2401 (2003)

    Article  CAS  Google Scholar 

  5. Kabi, S., Ghosh, A.: Dynamics of Ag+ ions and immobile salt effect in CdI2 doped silver phosphate glasses. Solid State Ionics 187, 39–42 (2011)

    Article  CAS  Google Scholar 

  6. Shaw, A., Ghosh, A.: Correlation of microscopic length scales of ion dynamics with network structure in lithium-iodide–doped lithium metaphosphate glasses. EPL- Europhys. Lett. 100(6), 0295–5075 (2012)

    Article  CAS  Google Scholar 

  7. Shaw, A., Ghosh, A.: Influence of Immobile Ions on the Length Scale of Ion Transport in Conducting Phosphate Glasses. J. Phys. Chem. C. 116, 24255–24261 (2012)

    Article  CAS  Google Scholar 

  8. Ghosh, A.: Memory switching in bismuth-vanadate glasses. J. Appl. Phys. 64, 2652 (1988)

    Article  CAS  Google Scholar 

  9. Livage, J., Jollivet, J.P., Tronc, E.: Electronic Properties of Mixed Valence Oxide Gels. J. Non-Cryst. Solids. 121, 35–39 (1990). https://doi.org/10.1016/0022-3093(90)90100-Z

    Article  CAS  Google Scholar 

  10. Sakuri, Y., Yamaki, J.: V2O5-P2O5 glasses as cathode for lithium secondary battery. J. Electrochem. Soc. 132, 512–513 (1985)

    Article  Google Scholar 

  11. Krishna, M., Veeraiah, G.N., Venkatramaiah, N., Venkatesan, R.: Induced crystallization and physical properties of Li2O–CaF2–P2O5: TiO2 glass system: part I. Characterization, spectroscopic and elastic properties. J. Alloy. Compd. 450, 477–485 (2008)

    Article  CAS  Google Scholar 

  12. Kundu, V., Dhiman, R.L., Maan, A.S., Goyal, D.R.: Structural and Physical Properties of Fe2O3-B2O3-V2O5 Glasses. Adv. Condens. Matter Phys. 937054, 7 (2008)

    Google Scholar 

  13. Renuka, C., Sujatha, B., Sivasankarareddy, N., Viswanatha, R., Narayanareddy, C.: Conductivity studies on molybdo-phosphate glasses containing ZnO. AIP Conf. Proc. 1942, 110039 (2018). https://doi.org/10.1063/1.5029022

    Article  CAS  Google Scholar 

  14. Dyre, J.C., Maass, P., Roling, B., Sidebottom, D.L.: Fundamental questions relating to ion conduction in disordered solids. Rep. Prog. Phys. 72, 046501 (2009)

    Article  CAS  Google Scholar 

  15. Brow, R.K.: The structure of simple phosphate glasses. J. Non-Cryst. Solids 263–264, 1–28 (2000)

    Article  Google Scholar 

  16. Brow, R.K., Tallant, D.R., Hudges, J.J., Martin, S.W., Irwin, A.D.: The short-range structure of sodium ultraphosphate glasses. J. Non-Cryst. Solids. 177, 221–228 (1994)

    Article  CAS  Google Scholar 

  17. Choudhary, B.P.: Electrical and dielectric behavior of zinc phosphate glasses. Materials Today: Proceedings 4, 5706–5714 (2017)

    Google Scholar 

  18. Soltani, I., Hraiech, S., Horchani-Naifer, K., Elhouichet, H., Ferid, M.: Effect of silver nanoparticles on spectroscopic properties of Er3+ doped phosphate glass. Opt. Mater. 46, 454–460 (2015)

    Article  CAS  Google Scholar 

  19. Goel, A., Tulyaganov, D.U., Kharton, V.V., Yaremchenko, A.A., Ferreira, J.M.F.: The effect of Cr2O3 addition on crystallization and properties of La2O3-containing diopside glass-ceramics. Acta Mater. 56, 3065–3076 (2008)

    Article  CAS  Google Scholar 

  20. Khor, S.F., Talib, Z.A., Sidek, H.A.A., Daud, W.M., Ng, B.H.: Effects of ZnO on dielectric properties and electrical conductivity of ternary zinc magnesium phosphate glasses. Am. J. Applied Sci. 6, 1010–1014 (2009)

    Article  CAS  Google Scholar 

  21. Cullity, B.D.: Elements of X-ray Diffraction, Addison-Wesley metallurgy series. Reading, Mass: Addison-Wesley, Book. 904102259, 1–167 (1956)

    Google Scholar 

  22. Sdiri, N., Elhouichet, H., Elakermi, E., Dhifallah, A., Ferid, M.: Structural investigation of amorphous Na2O–P2O5–B2O3 correlated with its ionic conductivity. J. Non-Cryst. Solids. 409, 34–42 (2015)

    Article  CAS  Google Scholar 

  23. Sandhya Rani, P., Singh, R.: Electron spin resonance and magnetization studies of ZnO–TeO2–Fe2O3 glasses. J. Phys. Chem. Solids. 74, 338–343 (2013)

    Article  CAS  Google Scholar 

  24. Cozar, O., Magdas, D.A., Nasdala, L., Ardelean, I., Damian, G.: Raman spectroscopic study of some lead phosphate glasses with tungsten ions. J. Non-Cryst. Solids 352, 3121–3125 (2006)

    Article  CAS  Google Scholar 

  25. Flambard, A., Videau, J.J., Delevoye, L., Cardinal, T., Labrugère, C., Rivero, C.A., Couzi, M., Montagne, L.: Structure and nonlinear optical properties of sodium–niobium phosphate glasses. J. Non-Cryst. Solids. 354, 3540–3547 (2008)

    Article  CAS  Google Scholar 

  26. Soltani, I., Hraiech, S., Horchani-Naifer, K., Massera, J., Petit, L., Ferid, M., Férid, M.: Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticles. J. Non-Cryst. Solids. 438, 67–73 (2016)

    Article  CAS  Google Scholar 

  27. Sułowska, J., Wacławska, I.: Structural role of Cu in the soil active glasses. Proc. Appl. Ceram. 6, 77–82 (2012)

    Article  Google Scholar 

  28. Karakassides, M.A., Saranti, A., Koutselas, I.: Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J. Non-Cryst. Solids. 347, 69–79 (2004)

    Article  CAS  Google Scholar 

  29. Mahfoudhi., M. (2019) Eu3+ ion environment modification by Electron and femtosecond laser irradiation in metaphosphate and polyphosphate glasses., Physics [physics]. Université Paris Saclay (COmUE), English. ffNNT : 2019SACLX066ff. fftel-03227516.

  30. Hameed, A.S.H., Karthikeyan, C., Ahamed, A.P., Thajuddin, N., Alharbi, N.S., Alharbi, S.A., Ravi, G.: In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae. Sci. Rep. 6, 24312 (2016)

    Article  CAS  Google Scholar 

  31. Goel, S., Sinha, N., Yadav, H., Joseph, A.J., Kuma, B.: Experimental investigation on the structural, dielectric, ferroelectric and piezoelectric properties of La doped ZnO nanoparticles and their application in dye-sensitized. Physica E. 91, 72–81 (2017)

    Article  CAS  Google Scholar 

  32. Farhadi NH, Rosli MR, Kimpa MI, Esa F, Ismail MH, Mayzan MZH M Synthesis and Properties of Zinc Iron Phosphate Glasses Prepared by Microwave and Conventional Processing Methods. J Sci Tech 9:87–91

  33. Jermoumi, T., Hassan, S., Hafid, M.: Structural investigation of vitreous barium zinc mixed. Metaphosphate, Vib Spect 32, 207–213 (2003)

    Article  CAS  Google Scholar 

  34. Darwishab, A.A.A., El-Zaidiac, E.F.M., El-Nahassc, M.M., Hanafybd, T.A., Al-Zubaidib, A.A.: Dielectric and electrical conductivity studies of bulk lead (II) oxide (PbO). J. Alloy Compd. 589, 393–398 (2014)

    Article  CAS  Google Scholar 

  35. Sdiri, N., Elhouichet, H., Azeza, B., Mokhtar, F.: Studies of (90–x) P2O5xB2O310Fe2O3 glasses by Mossbauer effect and impedance spectroscopy methods. J. Non-Cryst. Solids. 371–372, 22–27 (2013)

    Article  CAS  Google Scholar 

  36. Jlassi, I., Sdiri, N., Elhouichet, H., Ferid, M.: Raman and impedance spectroscopy methods of P2O5-Li2O- Al2O3 glass system doped with MgO. J. Alloys Compd. 645, 125–130 (2015)

    Article  CAS  Google Scholar 

  37. Choudhary, B.P.: Optimization of electrical conductivity in copper phosphate glasses. Mater. Today: Proceedings 29, 1235–1238 (2020)

    Google Scholar 

  38. Tiliakos, A., Iordache, M., Marinoiu, A.: Ionic Conductivity and Dielectric Relaxation of NASICON Superionic Conductors at the Near-Cryogenic Regime. Appl. Sci. 11, 8432 (2021)

    Article  CAS  Google Scholar 

  39. Bhide, A., Hariharan, K.: Sodium ion transport in NaPO3–Na2SO4 glasses. Mat. Chem. Phys. 105, 213–221 (2007)

    Article  CAS  Google Scholar 

  40. Friesen, G., Ozsar, M.E., Dunlop, E.: Impedance model for CdTe solar cells exhibiting constant phase element behaviour. Thin Solid Films 361–362, 303–308 (2000)

    Article  Google Scholar 

  41. Jorcin, J.B., Orazem, M.E., Pébère, N., Tribollet, B.: CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 51, 1473–1479 (2006)

    Article  CAS  Google Scholar 

  42. Barde, R.V., Nemad, K.R., Waghuley, S.A.: AC conductivity and dielectric relaxation in V2O5–P2O5–B2O3 glasses. J. Asian Ceram. Soc. 3, 116–122 (2015)

    Article  Google Scholar 

  43. Affleck, L., Leach, C.: Microstructures of BaTiO3 based PTC thermistors with Ca, Sr and Pb additions. J. Eur. Ceram. Soc. 25, 3017–3020 (2005)

    Article  CAS  Google Scholar 

  44. Murawski, L., Barczynski, R.J.: Electronic and ionic relaxations in oxide glasses. Solid State Ionics 176, 2145–2151 (2005)

    Article  CAS  Google Scholar 

  45. Pant, M., Kanchan, D.K., Gondaliya, N.: Transport properties and relaxation studies in BaO substituted Ag2O–V2O5–TeO2 glass system. Mater Chem Phys. 115, 98–104 (2009)

    Article  CAS  Google Scholar 

  46. Sundarakannan, B., Kakimoto, K., Ohsato, H.: Frequency and temperature dependent dielectric and conductivity behavior of KNbO3 ceramics. J. Appl. Phys. 94, 5182–5187 (2003)

    Article  CAS  Google Scholar 

  47. Yassin AY, Raouf Mohamed A, Abdelghany AM, Abdelrazek EM (2018) Enhancement of dielectric properties and AC electrical conductivity of nanocomposite using poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) filled with graphene oxide. J Mater Sci Mater Elec. https://doi.org/10.1007/s10854-018-9679-7

  48. Salman, F.: AC conductivity and Dielectric Study of Chalcogenide glasses of Se-Te-Ge System. Turk J Phys 28, 41–48 (2004)

    CAS  Google Scholar 

  49. Mottn NF, Davis EA (1979) International series of monographs on physics. Electron. Processes Non-Cryst.Mater, Oxford : Clarendon Press; New York : Oxford University Press, 7, 157–164

  50. Anand, G., Kuchhal, P., Sarah, P.: AC and DC Conductivity Studies on Lead-Free Ceramics:Sr1–xCaxBi4Ti4O15(x¼0, 0.2, 0.4, 0.6, 0.8). Part. Sci. Tech 33, 41–46 (2015)

    Article  CAS  Google Scholar 

  51. James, A.R., Srinivas, K.: Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mat. Res. Bul. 34, 1301–1310 (1999)

    Article  CAS  Google Scholar 

  52. Tabib, A., Sdiri, N., Elhouichet, H., Férid, M.: Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloy. Compd. S0925–8388, 02512–02522 (2015)

    Google Scholar 

  53. Saad, M., Stambouli, W., Sdiri, N., Elhouichet, H.: Effect of mixed sodium and vanadium on the electric and dielectric properties of zinc phosphate glass. Mat. Res. Bul. 89, 224–231 (2017)

    Article  CAS  Google Scholar 

  54. Elliott, S.R.: Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135 (1987)

    Article  CAS  Google Scholar 

  55. Fayek, M.K., Mostafa, M.F., Sayedahmed, F., AtaAllah, S.S., Kaiser, M.: On the electrical behavior of nickel ferrite-gallates. J. Magn. Magn Mater 210, 189–195 (2000)

    Article  CAS  Google Scholar 

  56. Anjali, Patial, B.S., Bhardwaj, S., Awasthi, A.M., Thakur, N.: On the AC-conductivity mechanism in nano-crystalline Se79− xTe15In6Pbx (x= 0, 1, 2, 4, 6, 8 and 10) alloys. Physica B: Cond. Mat. 523, 52–61 (2017)

    Article  CAS  Google Scholar 

  57. Long, A.R.: Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982)

    Article  CAS  Google Scholar 

  58. Aziz, S.B., Abdullah, O., Saeed, S.R., Ahmed, H.M.: Electrical and dielectric properties of copper ion conducting solid polymer electrolytes based on chitosan: CBH model for ion transport mechanism. Int J. Electrochem. Sci. 13, 3812–3826 (2018)

    Article  CAS  Google Scholar 

  59. Barranco, A.P., Amador, G., Huanosta, M.P.A., Valenzuela, R.: Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73, 2039–2041 (1998)

    Article  Google Scholar 

  60. Mauritz, K.A.: Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport. Macromol. 22, 4483–4488 (1989)

    CAS  Google Scholar 

  61. Poloju, M., Jayababu, N., Manikandan, E., Reddy, M.V.R.: Enhancement of the isopropanol gas sensing performance of SnO 2/ZnO core/shell nanocomposites. J. Mat. Chem. C. 5, 2662–2668 (2017)

    Article  CAS  Google Scholar 

  62. Garbarczyk, J.E., Machowski, P., Wasiucionek, M., Tykarski, L., Bacewicz, R., Aleksiejuk, A.: Studies of silver–vanadate–phosphate glasses by Raman, EPR and impedance spectroscopy methods. J. Solid State Ionics. 136, 1077–1083 (2000)

    Article  Google Scholar 

  63. Gedam, R.S., Ramteke, D.D.: Electrical, dielectric and optical properties of La2O3 doped lithium borate glasses. J. Phys. Chem. Solids. 4, 1039–1044 (2013)

    Article  CAS  Google Scholar 

  64. Khor, S.F., Talib, Z.A., Sidek, H.A.A., Daud, W.M., Ng, Am., B.H.: Effects of ZnO on dielectric properties and electrical conductivity of ternary zinc magnesium phosphate glasses. J. Applied Sci. 6(5), 1010–1014 (2009)

    CAS  Google Scholar 

  65. Zaafouri, A., Megdiche, M., Gargouri, M.: AC conductivity and dielectric behavior in lithium and sodium diphosphate LiNa3P2O7. J. Alloy. Compd. 584, 152–158 (2014)

    Article  CAS  Google Scholar 

  66. Barde, R.V., Waghuley, S.A.: Study of AC electrical properties of V2O5–P2O5–B2O3–Dy2O3 glasses. J Ceramint. 39, 6303–6311 (2013)

    CAS  Google Scholar 

  67. Badapanda, T., Senthil, V., Rout, S.K., Cavalcante, L.S., Simoes, A.Z., Sinha, T.P., de Jesus, M.M., Longo, E., Varela, J.A.: Rietveld refinement, microstructure, conductivity and impedance properties of Ba [Zr0. 25Ti0. 75] O3 ceramic. Curr. Appl. Phys. 11, 1282–1293 (2011)

    Article  Google Scholar 

  68. Srilatha, K., SambasivaRao, K., Gandhi, Y., Ravikumar, V., Veeraiah, N.: Fe concentration dependent transport properties of LiI–AgI–B2O3 glass system. J. Alloy. Comp. 507, 391–398 (2010)

    Article  CAS  Google Scholar 

  69. Choudhary, B.P., Rai, S., Singh, N.B.: Properties of silver phosphate glass doped with nanosize zinc oxide. Ceram. Inter. 42, 10813–10825 (2016)

    Article  CAS  Google Scholar 

  70. Langar, A., Sdiri, N., Elhouichet, H., Ferid, M.: Conductivity and dielectric behavior of NaPO3–ZnO–V2O5 glasses. J. Alloy. Compd. 590, 380–387 (2014)

    Article  CAS  Google Scholar 

  71. Charles, J.B., Ganam, F.D.: Dielectric studies on sodium fluoroantimonate single crystals. Cryst. Res. Technol. 29, 707–712 (1994)

    Article  CAS  Google Scholar 

  72. Hajra, S., Sahu, M., Purohit, V., Choudhary, R.N.P.: Dielectric, conductivity and ferroelectric properties of lead-free electronic ceramic:0.6Bi(Fe0.98Ga0.02)O3–0.4BaTiO3. Heliyon 5, 01654 (2019)

    Article  Google Scholar 

  73. ElBellihi, A.A., Bayoumy, W.A., Masoud, E.M., Mousa, M.A.: Preparation, Characterizations and Conductivity of Composite Polymer Electrolytes Based on PEO-LiClO4 and Nano ZnO Filler. Bull. Korean Chem. Soc. 33, 2949–3295 (2012)

    Article  CAS  Google Scholar 

  74. Kanagathara, N., Renganathan, N.G., Marchewka, M.K., Sivakumar, N., Gayathri, K., Krishnan, P., Gunasekaran, S., Anbalagan, G.: FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate. Spectrochim. Acta A. 101, 112–118 (2013)

    Article  CAS  Google Scholar 

  75. Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., and. Martin, S.W.: Relaxation in glass forming liquids and amorphous solids. J. Appl. Phys. 88(6), 3113–3157 (2000)

    Article  CAS  Google Scholar 

  76. Ben Rhaiem, A., Hlel, F., Guidara, K., Gargouri, M.: Dielectric relaxation and ionic conductivity studies of [N(CH 3) 4] 2Cu 0.5Zn 0.5Cl 4. J. Alloy. Comp. 463, 440–445 (2008)

    Article  CAS  Google Scholar 

  77. Nawar, A.M., Abd El-Khalek, H.M., El-Nahass, M.M.: Dielectric and Electric Modulus Studies on Ni (II) Tetraphenyl Porphyrin Thin Films. Org. Opto-Elect. 1, 25–38 (2015)

    Google Scholar 

  78. Dutta, A., Sinha, T.P., Jena, P., Adak, S.: Ac Conductivity and Dielectric Relaxation in Ionically Conducting Soda-Lime–Silicate Glasses. J. Non-Cryst Solids. 354, 3952–3957 (2008)

    Article  CAS  Google Scholar 

  79. Gerhardt, R.: Impedance and dielectric spectroscopy revisited: Distinguishing localized relaxation from long-range conductivity. J. Phys. Chem. Solids. 55, 1491–1506 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sdiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, I., Sdiri, N., Horchani-Naifer, K. et al. Structural, electric and dielectric studies on Er3+/Yb3+ co-doped zinc phosphate glasses. J Aust Ceram Soc 58, 757–775 (2022). https://doi.org/10.1007/s41779-022-00709-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-022-00709-2

Keywords

Navigation