Skip to main content
Log in

Particle-like and fluid-like settling of a stratified suspension

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The gravitational settling of inhomogeneously suspended particles in a fluid has been investigated. Of particular interest is whether collective or individual motion of particles is dominant during their settlings, i.e., whether the particles settle as a continuous suspension or they settle individually relative to the surrounding fluid. We observed the settling of a stratified suspension which has the lower and upper concentration interfaces in a quasi-two-dimensional vessel. In some cases, the suspension behaves perfectly as a continuous fluid and the motion of the constituent particle is subject to bulk flow caused by the interfacial instability. In other cases, the particle behaves individually relative to the surrounding fluid. The existence of a concentration interface plays a significant role in these extreme behaviors of suspension. The transition from the collective to individual behaviors can be predicted quantitatively by a parameter which expresses the border resolution of the concentration interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Kynch, Trans. Faraday Soc. 48, 166 (1952).

    Article  Google Scholar 

  2. R.H. Davis, A. Acrivos, Annu. Rev. Fluid Mech. 17, 91 (1985).

    Article  ADS  Google Scholar 

  3. J. Happel, H. Brenner Low Reynolds number hydrodynamics: with special applications to particulate media (Kluwer Academic Publishers, Dordrecht, 1973).

    Article  Google Scholar 

  4. S. Lee, Y. Jang, C. Choi, T. Lee, Phys. Fluids A 4, 2601 (1992).

    Article  ADS  Google Scholar 

  5. J.-Z. Xue, E. Herbolzheimer, M.A. Rutgers, W.B. Russel, P.M. Chaikin, Phys. Rev. Lett. 69, 1715 (1992).

    Article  ADS  Google Scholar 

  6. H. Nicolai, E. Guazzelli, Phys. Fluids 15, 1305 (2003).

    Article  MathSciNet  Google Scholar 

  7. H. Nicolai, B. Herzhaft, E.J. Hinch, L. Oger, E. Guazzelli, Phys. Fluids 7, 12 (1995).

    Article  ADS  Google Scholar 

  8. J. Martin, N. Rakotomalala, D. Salin, Phys. Rev. Lett. 74, 1347 (1995).

    Article  ADS  Google Scholar 

  9. R. H. Davis, J. Fluid Mech. 310, 325 (1996).

    Article  MathSciNet  ADS  Google Scholar 

  10. P.J. Mucha, M.P. Brenner, Phys. Fluids 7, 3 (1995).

    Article  Google Scholar 

  11. E. Guyon, J.-P. Hulin, L. Petit, C.D. Mitescu Physical Hydrodynamics (Oxford University Press, New York, 2001).

    Article  Google Scholar 

  12. J.M. Nitche, G.K. Batchelor, J. Fluid Mech. 340, 161 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Machu, W. Meile, L.C. Nitche, U. Schaflinger, J. Fluid Mech. 447, 299 (2001).

    Article  ADS  MATH  Google Scholar 

  14. B. Metzger, M. Nicolas, E. Guazzelli, J. Fluid Mech. 580, 283 (2007).

    Article  ADS  MATH  Google Scholar 

  15. K. Adachi, S. Kiriyama, N. Yoshioka, Chem. Eng. Sci. 33, 115 (1978).

    Article  Google Scholar 

  16. C. Völtz, M. Schröter, G. Iori, A. Betat, A. Lange, A. Engel, I. Rehberg, Phys. Rep. 337, 117 (2000).

    Article  ADS  Google Scholar 

  17. C. Völtz, W. Pesch, I. Rehberg, Phys. Rev. E 65, 011404 (2001).

    Article  Google Scholar 

  18. C. Völtz, Phys. Rev. E 68, 021408 (2003).

    Article  ADS  Google Scholar 

  19. F. Blanchette, J.W.M. Bush, Phys. Fluids 17, 073302 (2005).

    Article  ADS  Google Scholar 

  20. H. Michioka, I. Sumita, Geophys. Res. Lett. 32, L03309 (2005).

    Article  ADS  Google Scholar 

  21. J. Fernandez, P. Kurowski, L. Limat, P. Petitjeans, Phys. Fluids 13, 3120 (2001).

    Article  ADS  Google Scholar 

  22. J. Fernandez, P. Kurowski, P. Petitjeans, E. Meiburg, J. Fluid Mech. 451, 239 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. P. Carlès, Z. Huang, G. Carbone, C. Rosenblatt, Phys. Rev. Lett. 96, 104501 (2006).

    Article  ADS  Google Scholar 

  24. J. Huang, B.F. Edwards, Phys. Rev. E 54, 2620 (1996).

    Article  ADS  Google Scholar 

  25. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications, New York, 1981).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, S., Mitsui, T. & Sato, K. Particle-like and fluid-like settling of a stratified suspension. Eur. Phys. J. E 35, 1 (2012). https://doi.org/10.1140/epje/i2012-12001-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12001-6

Keywords

Navigation