Skip to main content
Log in

Dynamics of semi-flexible tethered sheets

A simulation study using stochastic rotation dynamics

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The dynamics of a semi-flexible sheet or tethered membrane in a solvent is studied using the method of stochastic rotation dynamics. Hydrodynamic interactions between different parts of the sheet are naturally included in this method. We confirm the scaling law for the radius of gyration versus sheet size predicted for a self-avoiding tethered membrane. The mean-square displacement shows both sub-diffusive and diffusive behavior similar to linear polymers. In the intermediate scattering function the sub-diffusive behavior appears as stretched exponential which we reproduce in our simulations. Thereby, we confirm an early prediction between the roughness and the sub-diffusion exponent derived from Zimm dynamics (E. Frey, D.R. Nelson, J. Phys. I 1, 1715 (1991)). Finally, we show that the diffusion coefficient of the square sheet is inversely proportional to the edge length of the sheet again in good agreement with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1994).

  2. P.E. Rouse, J. Chem. Phys. 21, 1272 (1953).

    Article  ADS  Google Scholar 

  3. B.H. Zimm, J. Chem. Phys. 24, 269 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  4. M.J. Bowick, A. Travesset, Phys. Rep. 344, 255 (2001).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. C.F. Schmidt, K. Svoboda, N. Lei, I.B. Petsche, L.E. Berman, C.R. Safinya, G.S. Grest, Science 259, 952 (1993).

    Article  ADS  Google Scholar 

  6. M.S. Spector, E. Naranjo, S. Chiruvolu, J.A. Zasadzinski, Phys. Rev. Lett. 73, 2867 (1994).

    Article  ADS  Google Scholar 

  7. Y. Kantor, M. Kardar, D.R. Nelson, Phys. Rev. A 35, 3056 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  8. Y. Kantor, D.R. Nelson, Phys. Rev. A 36, 4020 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  9. E. Frey, D.R. Nelson, J. Phys. I 1, 1715 (1991).

    Article  Google Scholar 

  10. J. van Vliet, J. Phys. II 4, 1737 (1994).

    Article  Google Scholar 

  11. R.B. Pandey, K.L. Anderson, B.L. Farmer, Phys. Rev. E 75, 061913 (2007).

    Article  ADS  Google Scholar 

  12. H. Popova, A. Milchev, Phys. Rev. E 77, 041906 (2008).

    Article  ADS  Google Scholar 

  13. H. Popova, A. Milchev, J. Chem. Phys. 127, 194903 (2007).

    Article  ADS  Google Scholar 

  14. E. Gauger, H. Stark, Phys. Rev. E 74, 021907 (2006).

    Article  ADS  Google Scholar 

  15. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999).

    Article  ADS  Google Scholar 

  16. A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000).

    Article  ADS  Google Scholar 

  17. G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009).

    Google Scholar 

  18. A. Malevanets, J.M. Yeomans, Europhys. Lett. 52, 231 (2000).

    Article  ADS  Google Scholar 

  19. J.T. Padding, A.A. Louis, Phys. Rev. E 77, 011402 (2008).

    Article  ADS  Google Scholar 

  20. Y. Yang, J. Elgeti, G. Gompper, Phys. Rev. E 78, 061903 (2008).

    Article  ADS  Google Scholar 

  21. M.T. Downton, H. Stark, J. Phys.: Condens. Matter 21, 204101 (2009).

    Article  ADS  Google Scholar 

  22. S.T. Knauert, J.F. Douglas, F.W. Starr, Macromolecules 43, 3438 (2010).

    Article  ADS  Google Scholar 

  23. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1991).

  24. Y. Inoue, Y. Chen, H. Ohashi, J. Stat. Phys. 107, 85 (2002).

    Article  MATH  Google Scholar 

  25. H. Noguchi, G. Gompper, Phys. Rev. E 72, 011901 (2005).

    Article  ADS  Google Scholar 

  26. T. Ihle, D.M. Kroll, Phys. Rev. E 63, 020201 (2001).

    Article  ADS  Google Scholar 

  27. T. Ihle, D.M. Kroll, Phys. Rev. E 67, 066705 (2003).

    Article  ADS  Google Scholar 

  28. F.F. Abraham, D.R. Nelson, Science 249, 393 (1990).

    Article  ADS  Google Scholar 

  29. F.F. Abraham, D.R. Nelson, J. Phys. 51, 2653 (1990).

    Article  Google Scholar 

  30. E. Guitter, F. David, S. Leibler, L. Peliti, J. Phys. 50, 1787 (1989).

    Article  Google Scholar 

  31. N. Geerts, E. Eiser, Soft Matter 6, 664 (2010).

    Article  ADS  Google Scholar 

  32. A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Science 317, 1366 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Babu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, S.B., Stark, H. Dynamics of semi-flexible tethered sheets. Eur. Phys. J. E 34, 136 (2011). https://doi.org/10.1140/epje/i2011-11136-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11136-2

Keywords

Navigation