Skip to main content
Log in

Microphase separation in polymer solutions containing surfactants

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A microphase separation in solutions containing a polymer and a mixture of two solvents, one of which consists of amphiphilic molecules (surfactant), is considered theoretically in the weak-segregation regime. A surfactant molecule is described as a dimer consisting of hydrophobic and polar parts. The energy gain due to the orientation of surfactant molecules can lead to the appearance of non-homogeneities in the solution, where density fluctuations cause the orientational ordering of surfactant molecules. The difference in the interaction energies of hydrophobic and polar groups of a surfactant with solvent is considered as a main reason for orienting surfactant molecules. The free energy is calculated for various morphologies (lamellar, cylindrical hexagonal, spherical particles arranged at different cubic lattices). The phase diagrams are presented. With worsening the solvent quality, the transitions from disordered to a macro-separated state at low polymer and surfactant concentrations or to a body-centered-cubic, then hexagonal, and then lamellar structure at high polymer and surfactant concentrations are predicted. The amphiphilicity degree of surfactant molecules should exceed a certain critical value to make a microstructure formation possible. The period of the lamellar microstructure decreases with increasing the surfactant and polymer concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Addarwal, Block Copolymers (Pleninum Press, New York, 1970)

  2. J.J. Burke, V. Weiss, Block and Graft Copolymers (Syracuse University Press, Syracuse NY, 1973)

  3. F.S. Bates, G.H. Fredrickson, Phys. Today 52, 32 (1999)

    Article  Google Scholar 

  4. S. Jain, F.S. Bates, Science 300, 460 (2003)

    Article  ADS  Google Scholar 

  5. W.M. Jornitza, T.H. Meltzerb, Filtr. Sep. 43, 38 (2006)

    Article  Google Scholar 

  6. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)

  7. A.C. Edrington, A.M. Urbas, P. de Rege, C.X. Chen, T.M. Swager, N. Hadjichristidis, M. Xenidou, L.J. Fetters, J.D. Joannopoulos, Y. Fink, E.L. Thomas, Adv. Mater. 13, 421 (2001)

    Article  Google Scholar 

  8. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001)

  9. S. Valkama, H. Kosonen, J. Ruokolainen, T. Haatainen, M. Torkkeli, R. Serimaa, G. Brinke, O. Ikkala, Nat. Mater. 3, 872 (2004)

    Article  ADS  Google Scholar 

  10. Y.J. Liua, X.W. Suna, H.T. Daib, J.H. Liub, K.S. Xub, Opt. Mater. 27, 1451 (2005)

    Article  ADS  Google Scholar 

  11. E.M. Heckman, J.G. Grote, F.K. Hopkins, P.P. Yaney, Appl. Phys. Lett. 89, 181116 (2006)

    Article  ADS  Google Scholar 

  12. P.S. Stoylov, Molecular and Colloidal Electro-Optics (Taylor & Francis, London, 2006)

  13. P.G. De Gennes, C. Taupin, J. Phys. Chem. 86, 2294 (1982)

    Article  Google Scholar 

  14. J.N. Israelachvili, Intermolecular & Surface Forces (Academic press, London, 1991)

  15. R. Lipowsky, Nature 349, 475 (1991)

    Article  ADS  Google Scholar 

  16. M.-F. Ficheux, L. Bonakdar, F. Lead-Caideron, J. Bibette, Langmuir 14, 2702 (1998)

    Article  Google Scholar 

  17. D. Acharya, S. Sharma, C. Rodrigues-Abreu, K. Aramaki, J. Phys. Chem. B 110, 20224 (2006)

    Article  Google Scholar 

  18. E. Radlinska, T. Gulik-Krzywicki, F.Lafuma, D. Langevin, W. Urbach, C. Williams, R. Ober, Phys. Rev. Lett. 74, 4237 (1995)

    Article  ADS  Google Scholar 

  19. M.-F. Ficheux, A.-M. Bellocq, F. Nallet, Colloids Surf. A. 123, 253 (1997)

    Article  Google Scholar 

  20. I. Akiba, H. Masunaga, S. Murata, K. Sasaki, E-polymers 036 (2006).

  21. W.-T. Wu, L. Shi, Q. Zhu, Y. Wang, W. Pang, Mater. Lett. 62, 2762 (2008)

    Article  Google Scholar 

  22. J. Ruokolainen, J. Tanner, G. ten Brinke, O. Ikkala, M. Torkkeli, R. Serimaa, Macromolecules 28, 7779 (1995)

    Article  ADS  Google Scholar 

  23. J. Ruokolainen, J. Tanner, G. ten Brinke, O. Ikkala, M. Torkkeli, R. Serimaa, Macromolecules 29, 3409 (1996)

    Article  ADS  Google Scholar 

  24. J. Ruokolainen, M. Torkkeli, R. Serimaa, B. Komanschek, O. Ikkala, G. ten Brinke, Phys. Rev. E 54, 6646 (1996)

    Article  ADS  Google Scholar 

  25. E. Hecht, H. Hoffmann, Langmuir 10, 86 (1994)

    Article  Google Scholar 

  26. B. Nandan, C. Lee, H. Chen, W. Chen, Macromolecules 38, 10117 (2005)

    Article  ADS  Google Scholar 

  27. S. Sharma, H. Kunieda, J. Esquena, C. Abreu, J. Colloid Interface Sci. 299, 297 (2006)

    Article  Google Scholar 

  28. S. Xing, G. Zhao, E-polymers 018 (2007)

  29. H. Hoffmann, C. Thunig, P. Schmiedel, U. Munkert, Langmuir 10, 3972 (1994)

    Article  Google Scholar 

  30. J. Oberdisse, C. Couve, J. Appell, J. Berret, C. Ligoure, G. Porte, Langmuir 12, 1212 (1996)

    Article  Google Scholar 

  31. Y. Yan, H. Hoffmann, A. Leson, C. Mayer, J. Phys. Chem. B 111, 6161 (2007)

    Article  Google Scholar 

  32. I.W. Hamley, Introduction to Soft Matter: Polymers, Colloids, Amphiphiles, Liquid Crystals (Wiley, Chichester, 2000)

  33. T. Nylander, Y. Samoshina, B. Lindman, J. Colloid Interface Sci. 123, 105 (2006)

    Article  Google Scholar 

  34. A. Diez-Pascual, A. Compostizo, A. Crespo-Colin, R. Rubio, R. Miller, J. Colloid Interface Sci. 307, 398 (2007)

    Article  Google Scholar 

  35. R. José, G. Ochoa, M. Munoz, D. Reinoso, P. Sasia, F. Escudero, F. Río, J. Mestre, J. Torrecilla, E-polymers 030 (2008)

  36. J. Brake, A. Mezera, N. Abbott, Langmuir 19, 6436 (2003)

    Article  Google Scholar 

  37. J. Brake, A. Mezera, N. Abbott, Langmuir 19, 8629 (2003)

    Article  Google Scholar 

  38. A.S. Ushakova, E.N. Govorun, A.R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006)

    Article  ADS  Google Scholar 

  39. L. Onsager, NY Ann. Acad. Sci. 51, 627 (1949)

    Article  ADS  Google Scholar 

  40. V.V. Vasilevskaya, P.G. Khalatur, A.R. Khokhlov, Macromolecules 36, 10103 (2003)

    Article  ADS  Google Scholar 

  41. G.H. Fredrickson, Macromolecules 26, 2825 (1993)

    Article  ADS  Google Scholar 

  42. A.S. Ushakova, E.N. Govorun, A.R. Khokhlov, Polym. Sci. A 50, 854 (2008)

    Article  Google Scholar 

  43. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)

  44. L. Leibler, Macromolecules 13, 1602 (1980)

    Article  ADS  Google Scholar 

  45. I.Ya. Yerukhimovich, Polym. Sci. U.S.S.R. 24, 2232 (1982)

    Article  Google Scholar 

  46. I.Ya. Erukhimovich, in Nanostructured Soft Matter Experiment, Theory, Simulation and Perspectives, edited by A.V. Zvelindovsky (Springer, Dordrecht, 2007)

  47. E. Dormidontova, G. ten Brinke, Colloids Surf. A: Physicochem. Eng. Aspects 147, 249 (1999)

    Article  Google Scholar 

  48. A. Olemskoi, A. Savelyev, Phys. Rep. 419, 145 (2005)

    Article  ADS  Google Scholar 

  49. B.A. Veytsman, J. Chem. Phys. 94, 8499 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Govorun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Govorun, E.N., Ushakova, A.S. & Khokhlov, A.R. Microphase separation in polymer solutions containing surfactants. Eur. Phys. J. E 32, 229–242 (2010). https://doi.org/10.1140/epje/i2010-10639-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10639-6

Keywords

Navigation