Skip to main content
Log in

Shape transition of semi-flexible macromolecules confined in channel and cavity

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Stiff macromolecules entrapped in channels or in spherical cavities undergo a shape transition on increasing confinement as shown by our investigation using molecular simulations. In channels this weak-to-strong confinement transition leads to extended conformations without the hairpin-like back-folding. In cavities, on decrease of cavity radius, the semi-flexible chain in a disordered state starts to self-organize into the torus. As a common rule for both types of confinement the transition to the ordered structures is observed when the radius of cavity and cylindrical channel reaches the lower bound of macromolecular flexibility given by the average typical radius of curvature of the chain, which is approximately equal to the persistence length of the macromolecular chain. This simple geometric rule finds its application in various confinement situations of stiff bio-macromolecules either in micro-channel experiments or in real biophysical situation, such as DNA in viral capsid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.W. Reisner, K.J. Morton, R. Riehn, Y.M. Wang, Z. Yu, M. Rosen, J.C. Sturm, S.Y. Chou, E. Frey, R.H. Austin, Phys. Rev. Lett. 94, 196101 (2005)

    Article  ADS  Google Scholar 

  2. J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan, R.H. Austin, Proc. Natl. Acad. Sci. U.S.A. 101, 10979 (2004)

    Article  ADS  Google Scholar 

  3. J.J. Kasianowics, E. Brandin, D. Branton, D.W. Deaner, Proc. Natl. Acad. Sci. U.S.A. 93, 13770 (1996)

    Article  ADS  Google Scholar 

  4. C.R. Locker, S.C. Harvey, Multiscale Model. Simul. 5, 1264 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. P.-G. de Gennes, Scaling Concept in Polymer Physics (Cornell University Press, Ithaca, 1979)

  6. T. Odijk, Macromolecules 16, 1340 (1983)

    Article  ADS  Google Scholar 

  7. P. Cifra, P. Linse, E. Nies, J. Phys. Chem. B 112, 8923 (2008)

    Article  Google Scholar 

  8. P. Cifra, Z. Benkova, T. Bleha, J. Phys. Chem. B 113, 1843 (2009)

    Article  Google Scholar 

  9. A. Milchev, K. Binder, Macromolecules 29, 343 (1996)

    Article  ADS  Google Scholar 

  10. P. Cifra, T. Bleha, Polymer 48, 2444 (2007)

    Article  Google Scholar 

  11. P. Cifra, J. Chem. Phys. 131, 224903 (2009)

    Article  ADS  Google Scholar 

  12. Y. Liu, B. Chakraborty, Phys. Biol. 5, 026004 (2008)

    Article  ADS  Google Scholar 

  13. A. Craig, E.M. Terentjev, Macromolecules 39, 4557 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cifra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cifra, P., Bleha, T. Shape transition of semi-flexible macromolecules confined in channel and cavity. Eur. Phys. J. E 32, 273–279 (2010). https://doi.org/10.1140/epje/i2010-10626-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10626-y

Keywords

Navigation