Skip to main content
Log in

Routing Physarum with repellents

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Plasmodium of Physarum polycephalum is a single cell with many nuclei. Plasmodium is an easy-to-experiment-with biological substrate, a multi-functional bio-material used to implement novel and future computing architectures. The plasmodium exhibits typical features of excitable chemical systems and capable for distributed sensing, parallel information processing and decentralized actuation. Plasmodium of P. polycephalum is proved to be a universal storage modification machine. Actively growing zones of the plasmodium are considered to be elementary processors of the growing computing machine, as well as messages traveling in the spatially extended non-linear medium. Controlling propagation of the messages and computing processes is a prerequisite for a successful implementation of working prototypes of plasmodium machines. In laboratory experiments and computer simulation we show that active growing zones of plasmodium can be precisely routed using repelling diffusion gradients generated by crystals of sodium chloride. We demonstrate how to achieve controllable reflection, splitting/multiplication and merging of plasmodium’s active zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Nakagaki, H. Yamada, T. Ueda, Biophys. Chem. 82, 23 (1999)

    Article  Google Scholar 

  2. T. Nakagakia, H. Yamada, T. Ueda, Biophys. Chem. 84, 195 (2000)

    Article  Google Scholar 

  3. T. Nakagaki, Res. Microbiol. 152, 767 (2001)

    Article  Google Scholar 

  4. T. Nakagaki, H. Yamada, A. Toth, Biophys. Chem. 92, 47 (2001)

    Article  Google Scholar 

  5. T. Nakagaki, M. Iima, T. Ueda, Y. Nishiura, T. Saigusa, A. Tero, R. Kobayashi, K. Showalter, Phys. Rev. Lett. 99, 068104 (2007)

    Article  ADS  Google Scholar 

  6. A. Adamatzky, Naturwiss. 94, 975 (2007)

    Article  ADS  Google Scholar 

  7. F. Achenbach, M.H. Weisenseel, Cell Biol. Int. Rep. 5, 375 (1981)

    Article  Google Scholar 

  8. A. Adamatzky, B. De Lacy Costello, T. Asai, Reaction-Diffusion Computers (Elsevier, Amsterdam, 2005)

  9. J. Beal, Lect. Notes Comput. Sci. 3566, 121 (2005)

    Google Scholar 

  10. A. Adamatzky, Parallel Process. Lett. 19, 105 (2009)

    Article  MathSciNet  Google Scholar 

  11. T. Shirakawa, A. Adamatzky, Y.-P. Gunji, Y. Miyake, Int. J. Bifurcat. Chaos 19, 3109 (2009)

    Article  Google Scholar 

  12. T. Saigusa, A. Tero, T. Nakagaki, Y. Kuramoto, Phys. Rev. Lett. 100, 018101 (2008)

    Article  ADS  Google Scholar 

  13. S. Tsuda, M. Aono, Y.-P. Gunji, BioSystems 73, 45 (2004)

    Article  Google Scholar 

  14. S. Tsuda, K.-P. Zauner, Y.-P. Gunji, BioSystems 87, 215 (2007)

    Article  Google Scholar 

  15. A. Schumann, A. Adamatzky, in: Proceedings of the 1st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, Timisoara, Romania, September 26-29, 2009

  16. A. Adamatzky, Parallel Process. Lett. 17, 455 (2007)

    Article  MathSciNet  Google Scholar 

  17. A.N. Kolmogorov, Usp. Mat. Nauk 8, 175 (1953)

    MATH  Google Scholar 

  18. A.N. Kolmogorov, V.A. Uspensky, Usp. Mat. Nauk 13, 3 (1958) (in Russian) English translation: ASM Translations 21

    MATH  Google Scholar 

  19. V.A. Uspensky, J. Symbolic Logic 57, 385 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  20. D.E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms (Addison-Wesley, Reading, Mass, 1968)

  21. R.E. Tarjan, Reference machines require non-linear time to maintain disjoint sets, STAN-CS-77-603, March 1977

  22. A. Schönhage, Real-time simulation of multi-dimensional Turing machines by storage modification machines, Project MAC Technical Memorandum 37, MIT (1973)

  23. A. Schönhage, SIAM J. Comput. 9, 490 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Tarassenko, A. Blake, Proc. IEEE Int. Conf. Robotics Automation 1, 540 (1991)

    Article  Google Scholar 

  25. J. Hagelbäck, S.J. Johansson, Proc. AIDE (2009)

  26. G.-X. Cheng, M. Ikegami, M. Tanaka, in Proceedings of the 34th Midwest Symposium on Circuits and Systems, Vol. 2 (1991) pp. 827–830.

  27. A. Adamatzky, J. Jones, Nat. Comput. 9, 219 (2010)

    Article  MATH  Google Scholar 

  28. K.E. Wohlfarth-Bottermann, I. Block, Cell Biol. Intl. Rep. 5, 365 (1981)

    Article  Google Scholar 

  29. I. Block, K.E. Wohlfarth-Bottermann, Cell Biol. Intl. Rep. 5, 73 (1981)

    Article  Google Scholar 

  30. A. Adamatzky, to be published in New Math. Nat. Comput

  31. A. Adamatzky, Phys. Lett. A 373, 952 (2009)

    Article  ADS  Google Scholar 

  32. R.J. Field, R.M. Noyes, J. Chem. Phys. 60, 1877 (1974)

    Article  ADS  Google Scholar 

  33. J.J. Tyson, P.C. Fife, J. Chem. Phys. 73, 2224 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  34. V. Beato, H. Engel, in: Noise in Complex Systems and Stochastic Dynamics, edited by L. Schimansky-Geier, D. Abbott, A. Neiman, C. Van den Broeck Proc. SPIE, Vol. 5114 (2003) pp. 353–362

  35. H.J. Krug, L. Pohlmann, L. Kuhnert, J. Phys. Chem. 94, 4862 (1990)

    Article  Google Scholar 

  36. A. Adamatzky, B. De Lacy Costello, T. Shirakawa, Int. J. Bifurcat. Chaos 18, 2373 (2009)

    MathSciNet  Google Scholar 

  37. A. Adamatzky (Editor), Collision Based Computing (Springer, 2003)

  38. O. Steinbock, P. Kettunen, K. Showalter, J. Phys. Chem. 100, 18970 (1996)

    Article  Google Scholar 

  39. K. Yoshikawa, I.M. Motoike, T. Ichino, T. Yamaguchi, Y. Igarashi, J. Gorecki, J.N. Gorecka, Int. J. Unconventional Comput. 5, 3 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Adamatzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamatzky, A. Routing Physarum with repellents. Eur. Phys. J. E 31, 403–410 (2010). https://doi.org/10.1140/epje/i2010-10589-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10589-y

Keywords

Navigation