Skip to main content
Log in

Lamellar phase coexistence induced by electrostatic interactions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Membranes containing highly charged biomolecules can have a minimal free-energy state at small separations that originates in the strongly correlated electrostatic interactions mediated by counterions. This phenomenon can lead to a condensed, lamellar phase of charged membranes that coexists in thermodynamic equilibrium with a very dilute membrane phase. Although the dilute phase is mostly water, entropy dictates that this phase must contain some membranes and counterions. Thus, electrostatics alone can give rise to the coexistence of a condensed and an unbound lamellar phase. We use numerical simulations to predict the nature of this coexistence when the charge density of the membrane is large, for the case of multivalent counterions and for a membrane charge that is characteristic of biomolecules. We also investigate the effects of counterion size and salt on the two coexisting phases. With increasing salt concentration, we predict that electrostatic screening by salt can destroy the phase separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and Membranes (Addison-Wesley, Reading, MA 1994)

  2. M. Dubois, T. Zemb, N. Fuller, R.P. Rand, V.A. Parsegian, J. Chem. Phys. 108, 7855 (1998)

    Article  ADS  Google Scholar 

  3. M. Dubois, T. Zemb, L. Belloni, J. Chem. Phys. 96, 2278 (1992)

    Article  ADS  Google Scholar 

  4. L.J. Lis, V.A. Parsegian, R.P. Rand, Biochemistry 20, 1761 (1981)

    Article  Google Scholar 

  5. L.J. Lis, W.T. Lis, V.A. Parsegian, R.P. Rand, Biochemistry 20, 1771 (1981)

    Article  Google Scholar 

  6. P. Jokela, B. Jonsson, B. Eichmuller, K. Fontell, Langmuir 4, 187 (1988)

    Article  Google Scholar 

  7. A. Aroti, E. Leontidis, M. Dubois, T. Zemb, Biophys. J. 93, 1580 (2007)

    Article  ADS  Google Scholar 

  8. J.C. Illner, H. Hoffmann, Phys. Chem. 32, 318 (1995)

    Google Scholar 

  9. Massimo G. Noro, William M. Gelbart, J. Chem. Phys. 111, 3733 (1999)

    Article  ADS  Google Scholar 

  10. Daniel Harries, Rudi Podgornik, V. Adrian Parsegian, Etay Mar-Or, David Andelman, J. Chem. Phys. 124, 224702 (2006)

    Article  ADS  Google Scholar 

  11. Adi Shafir, David Andelman, Phys. Rev. E 74, 021803 (2006)

    Article  ADS  Google Scholar 

  12. Reinhard Lipowsky, Stanislas Leibler, Phys. Rev. Lett. 56, 2541 (1986)

    Article  ADS  Google Scholar 

  13. S. Milner, D. Roux, J. Phys. I 2, 1741 (1992)

    Article  Google Scholar 

  14. A.G. Moreira, R.R. Netz, Eur. Phys. J. E 8, 33 (2002)

    Google Scholar 

  15. L.G. Gulbrand, Bo Jonsson, H. Innerstrom, P. Linse, J. Chem. Phys. 80, 317 (1987)

    Google Scholar 

  16. A.Yu. Grosberg, T.T. Nguyen, B.I. Shklovskii, Rev. Mod. Phys. 74, 329 (2002)

    Article  ADS  Google Scholar 

  17. A. Naji, S. Jungblut, A.G. Moreira, R.R. Netz, Physica A 352, 131 (2005)

    Article  ADS  Google Scholar 

  18. R.R. Netz, Eur. Phys. J. E 5, 557 (2001)

    Article  Google Scholar 

  19. G. Gouy, J. Phys. 9, 457 (1910)

    Google Scholar 

  20. D.L. Chapman, Philos. Mag. 25, 475 (1913)

    Google Scholar 

  21. Y.S. Jho, G. Park, C.S. Chang, P. Pincus, M.W. Kim, Phys. Rev. E 73, 021502 (2006)

    Article  ADS  Google Scholar 

  22. D. Lukatsky, S.A. Safran, Europhys. Lett. 60, 629 (2002)

    Article  ADS  Google Scholar 

  23. John P. Valleau, L. Kenneth Cohen, J. Chem. Phys. 72, 11 (1980)

    Google Scholar 

  24. B. Widom, J. Chem. Phys. 39, 2808 (1963)

    Article  ADS  Google Scholar 

  25. K.S. Shing, K.E. Gubbins, Mol. Phys. 46, 1109 (1982)

    Article  ADS  Google Scholar 

  26. N.G. Parsonage, Mol. Phys. 89, 1133 (1996)

    ADS  Google Scholar 

  27. G.C. Boulougouris, I.G. Economou, D.N. Theodorou, Mol. Phys. 96, 905 (1999)

    ADS  Google Scholar 

  28. L.G. Gulbrand, Bo Jonsson, H. Wennerstrom, P. Linse, J. Chem. Phys. 80, 2221 (1984)

    Article  ADS  Google Scholar 

  29. A. Arnold, J. Joaniss, C. Holm, J. Chem. Phys. 117, 2496 (2002)

    Article  ADS  Google Scholar 

  30. J. Lekner, Phys. A 176, 485 (1991)

    Article  Google Scholar 

  31. R. Sperb, Mol. Simul. 20, 179 (1998)

    Article  MATH  Google Scholar 

  32. Y.S. Jho, M.W. Kim, P.A. Pincus, F.L.H. Brown, J. Chem. Phys. 129, 134511 (2008)

    Article  ADS  Google Scholar 

  33. Y.S. Jho, M. Kanduc, A. Naji, R. Podgornik, M.W. Kim, P.A. Pincus, Phys. Rev. Lett. 101, 188101 (2008)

    Article  ADS  Google Scholar 

  34. Y. Burak, D. Andelman, H. Orland, Phys. Rev. E 70, 016102 (2004)

    Article  ADS  Google Scholar 

  35. Y.S. Jho, M.W. Kim, P. Pincus, in preparation

  36. Jean-Pierre Hassen, Hartmut Lowen, Annu. Rev. Phys. Chem. 51, 209 (2000)

    Article  ADS  Google Scholar 

  37. B. I. Shklovskii, Phys. Rev. E 60, 5802 (1999)

    Article  ADS  Google Scholar 

  38. A. Lau, D. Lukatsky, P. Pincus, S.A. Safran, Phys. Rev. E 65, 051502 (2002)

    Article  ADS  Google Scholar 

  39. Y.G. Chen, J.D. Weeks, Proc. Natl. Acad. Sci. U.S.A. 103, 7560 (2006)

    Article  ADS  Google Scholar 

  40. J.M. Rodgers, C. Kaur, Y.-G. Chen, J.D. Weeks, Phys. Rev. Lett. 97, 097801 (2006)

    Article  ADS  Google Scholar 

  41. Christian D. Santangelo, Phys. Rev. E 73, 041512 (2006)

    Article  ADS  Google Scholar 

  42. L.D. Landau, E.M. Lifshitz, Statistical Physics Part 1 (Pergamon Press, Oxford, 1980)

  43. S.A. Allison, J.J. Sines, A. Wierzbicki, J. Phys. Chem. 93, 5819 (1989)

    Article  Google Scholar 

  44. G. Hed, S.A. Safran, Phys. Rev. Lett. 93, 138101 (2004)

    Article  ADS  Google Scholar 

  45. David J. Earl, Michael W. Deem, Phys. Chem. Chem. Phys. 7, 3910 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Jho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jho, Y.S., Kim, M.W., Safran, S.A. et al. Lamellar phase coexistence induced by electrostatic interactions. Eur. Phys. J. E 31, 207–214 (2010). https://doi.org/10.1140/epje/i2010-10567-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10567-5

Keywords

Navigation