Skip to main content
Log in

Molecular dynamics simulation of semiflexible polyampholyte brushes--The effect of charged monomers sequence

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Planar brushes formed by end-grafted semiflexible polyampholyte chains, each chain containing an equal number of positively and negatively charged monomers, are studied using molecular dynamics simulations. Keeping the length of the chains fixed, the dependences of the average brush thickness and equilibrium statistics of the brush conformations on the grafting density and the salt concentration are obtained with various sequences of charged monomers. When similarly charged monomers of the chains are arranged in longer blocks, the average brush thickness is smaller and the dependence of brush properties on the grafting density and the salt concentration is stronger. With such long blocks of similarly charged monomers, the anchored chains bond to each other in the vicinity of the grafting surface at low grafting densities and buckle toward the grafting surface at high grafting densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Hong, R.L. Legge, S. Zhang, P. Chen, Biomacromolecules. 4, 1434 (2003).

  2. S. Jun, Y. Hong, H. Imamura, B.-Y. Ha, J. Bechhoefer, P. Chen, Biophys. J. 87, 1249 (2004).

    Google Scholar 

  3. R. Messina, Eur. Phys. J. E 22, 325 (2007).

    Google Scholar 

  4. A.V. Dobrynin, R.H. Colby, M. Rubinstein, J. Polym. Sci., Part B: Polym. Phys. 42, 3513 (2004).

    Google Scholar 

  5. J.B. Imbert, J.M. Victor, N. Tsunekawa, Y. Hiwatari, Phys. Lett. A 258, 92 (1999).

    Google Scholar 

  6. A. Baumketner, H. Shimizu, M. Isobe, Y. Hiwatari, J. Phys.: Condens. Matter 13, 10279 (2001).

    Google Scholar 

  7. Z. Wang, M. Rubinstein, Macromolecules 39, 5897 (2006).

  8. M. Castelnovo, J.F. Joanny, Macromolecules 35, 4531 (2002).

  9. N.P. Shusharina, E.B. Zhulina, A.V. Dobrynin, M. Rubinstein, Macromolecules 38, 8870 (2005).

  10. G.Z. Zheng, G. Meshitsuka, A. Ishizu, J. Polym. Sci., Part B: Polym. Phys. 33, 867 (1995).

    Google Scholar 

  11. G. Ehrlich, P. Doty, J. Am. Chem. Soc. 76, 3764 (1954).

    Google Scholar 

  12. C.L. McCormick, L.C. Salazar, Macromolecules 25, 1896 (1992).

  13. J.M. Corpart, F. Candau, Macromolecules 26, 1333 (1993).

  14. C.M. Wijmans, E.B. Zhulina, Macromolecules 26, 7214 (1993).

  15. E. Lindberg, C.J. Elvingson, Chem. Phys. 114, 6343 (2001).

    Google Scholar 

  16. J. Klos, T. Pakula, Macromolecules 37, 8145 (2004).

  17. A.S. Almusallam, D.S. Sholl, Nanotechnology 16, S409 (2005).

  18. P. Pincus, Macromolecules 24, 2912 (1991).

  19. E.B. Zhulina, O.V. Borisov, Macromolecules 29, 2618 (1996).

  20. E.B. Zhulina, J.K. Wolterink, O.V. Borisov, Macromolecules 33, 4945 (2000).

  21. O.V. Borisov, T.M. Birstein, E.B. Zhulina, J. Phys. II 2, 63 (1992).

    Google Scholar 

  22. E.B. Zhulina, O.V. Borisov, J. Chem. Phys. 107, 5952 (1997).

    Google Scholar 

  23. A. Naji, R.R. Netz, C. Seidel, Eur. Phys. J. E 12, 223 (2003).

    Google Scholar 

  24. H. Ahrens, S. Forster, C.A. Helm, N.A. Kumar, A. Naji, R.R. Netz, C. Seidel, J. Phys. Chem. B 108, 16870 (2004).

    Google Scholar 

  25. A. Naji, C. Seidel, R.R. Netz, Adv. Polym. Sci. 198, 149 (2006).

    Google Scholar 

  26. F.S. Csajka, C. Seidel, Macromolecules 33, 2728 (2000).

  27. C. Seidel, Macromolecules 36, 2536 (2003).

  28. H. Fazli, R. Golestanian, P.L. Hansen, M.R. Kolahchi, Europhys. Lett. 73, 429 (2006).

    Google Scholar 

  29. O.V. Borisov, T.M. Birstein, E.B. Zhulina, J. Phys. II 1, 521 (1991).

    Google Scholar 

  30. N.P. Shusharina, P. Linse, Eur. Phys. J. E 4, 399 (2001).

    Google Scholar 

  31. N.P. Shusharina, P. Linse, Eur. Phys. J. E 6, 147 (2001).

    Google Scholar 

  32. A. Akinchina, N.P. Shusharina, P. Linse, Langmuir 20, 10351 (2004).

  33. A. Akinchina, P. Linse, Langmuir 23, 1465 (2007).

  34. P. Linse, J. Chem. Phys. 126, 114903 (2007).

    Google Scholar 

  35. H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006).

    Google Scholar 

  36. G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986).

    Google Scholar 

  37. R. Strebel, R. Sperb, Mol. Simul. 27, 61 (2001).

    Google Scholar 

  38. A. Arnold, C. Holm, Comput. Phys. Commun. 148, 327 (2002).

    Google Scholar 

  39. M. Baratlo, H. Fazli, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Fazli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratlo, M., Fazli, H. Molecular dynamics simulation of semiflexible polyampholyte brushes--The effect of charged monomers sequence. Eur. Phys. J. E 29, 131–138 (2009). https://doi.org/10.1140/epje/i2009-10458-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10458-x

PACS

Navigation