Skip to main content
Log in

Polydisperse Brush with the Linear Density Profile

  • Published:
Polymer Science, Series C Aims and scope Submit manuscript

Abstract

Macromolecules densely end-grafted to a planar solid surface form a polymer monolayer (brush). It is known that, in a good solvent, the density profile of monodisperse brushes parabolically decays on moving away from the plane. Using the analytical theory and computer simulation methods, we studied the structure of a polydisperse brush from homopolymers, for which molecular-mass distribution is set by the Schulz–Zimm distribution. It is found that, at a polydispersity index of 1.143, the polymer brush in a good solvent has a linear density profile. In this brush, the average distance of chain ends to the grafting plane is proportional to the square of their contour length. If any chain of the brush is chemically modified so that it will be able to adsorb on the grafting surface, then the adsorption of this chain inside the brush will proceed via a discontinuous first-order phase transition with the bimodal distribution of the order parameter (free end height). This transition has unusual features: the energy of adsorption corresponding to the midpoint of the transition is proportional to the contour length of the adsorbing chain N, the sharpness of the transition is proportional to N2, and the height of the barrier separating adsorbed and desorbed states is proportional to N3. The predicted dependences are verified by computer simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ayres, Polym. Chem. 1, 769 (2010).

    Article  CAS  Google Scholar 

  2. G. D. Bixler and B. Bhushan, Philos. Trans. R. Soc., A 370, 2381 (2012).

    Article  CAS  Google Scholar 

  3. B. Zdyrko, V. Klep, X. Li, Q. Kang, S. Minko, X. Wen, and I. Luzinov, Mater. Sci. Eng., A 29, 680 (2009).

    Article  CAS  Google Scholar 

  4. J. Klein, D. Perahia, and S. Warburg, Nature 352, 143 (1991).

    Article  CAS  Google Scholar 

  5. M. K. Singh, P. Ilg, R. M. Espinosa-Marzal, M. Kroger, and N. D. Spencer, Langmuir 31, 4805 (2015).

    Google Scholar 

  6. J. Klein, Science 323, 47 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Stuart M. A. Cohen, W. T. S. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Scleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, L. Lusinov, and S. Minko, Nat. Matter 9, 101 (2010).

    Article  CAS  Google Scholar 

  8. Handbook of Stimuli-Responsive Materials, Ed. by U. U. Marek (Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, 2011).

  9. W. L. Chen, R. Cordero, H. Tran, and C. K. Ober, Macromolecules 50, 4089 (2017).

    Article  CAS  Google Scholar 

  10. S. Alexander, J. Phys. (Paris) 38, 977 (1977).

    Article  CAS  Google Scholar 

  11. A. A. Gorbunov, I. V. Pavlushkov, and A. M. Skvortsov, Vysokomol. Soedin., Ser. A 30 (2), 431 (1988).

    CAS  Google Scholar 

  12. A. M. Skvortsov, I. V. Pavlushkov, and A. A. Gorbunov, Vysokomol. Soedin., Ser. A 30 (4), 503 (1988).

    CAS  Google Scholar 

  13. A. M. Skvortsov, I. V. Pavlushkov, A. A. Gorbunov, E. B. Zhulina, O. V. Borisov, and V. A. Pryamitsyn, Vysokomol. Soedin., Ser. A 30 (8), 615 (1988).

    Google Scholar 

  14. E. B. Zhulina, V. A. Pryamitsyn, and O. V. Borisov, Vysokomol. Soedin., Ser. A 31 (1), 185 (1989).

    CAS  Google Scholar 

  15. S. T. Milner, T. A. Witten, and M. Cates, Europhys. Lett. 5, 413 (1988).

    Article  CAS  Google Scholar 

  16. S. T. Milner, T. A. Witten, and M. Cates, Macromolecules 21, 2610 (1988).

    Article  CAS  Google Scholar 

  17. S. Hirz, Masters Thesis (Univ. Minnesota, 1986).

  18. S. T. Milner, Science 251, 905 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. S. T. Milner, T. A. Witten, and M. Cates, Macromolecules 22, 853 (1989).

    Article  CAS  Google Scholar 

  20. G. J. Fleer, M. A. Cohen-Stuart, J. M. H. M. Scheutjens, T. Cosgrove, and B. Vinsent, in Polymer at Interfaces (Chapman and Hall, London, 1993).

    Google Scholar 

  21. E. B. Zhulina, O. V. Borisov, V. A. Pryamitsyn, and T. M. Birshtein, Macromolecules 24, 140 (1991).

    Article  CAS  Google Scholar 

  22. T. M. Birshtein and V. M. Amoskov, Polym. Sci., Ser. C 42 (1), 172 (2000).

    Google Scholar 

  23. K. Binder and A. Milchev, J. Polym. Sci., Polym. Phys. Ed. 50, 1515 (2012).

    Article  CAS  Google Scholar 

  24. E. B. Zhulina, O. V. Borisov, and L. Brombacher, Macromolecules 24, 4679 (1991).

    Article  CAS  Google Scholar 

  25. C. M. Wijmans, E. B. Zhulina, and G. J. Fleer, Macromolecules 27, 3238 (1991).

    Article  Google Scholar 

  26. T. Kreer and S. M. Balko, ACS Macro Lett. 2, 944 (2013).

    Article  CAS  Google Scholar 

  27. J. I. Martin and Z. G. Wang, J. Phys. Chem. 99, 2833 (1995).

    Article  CAS  Google Scholar 

  28. T. Kreer, Soft Matter 12, 3479 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. A. A. Polotsky, F. A. M. Leermakers, E. B. Zhulina, and T. M. Birshtein, Macromolecules 45, 7260 (2012).

    Article  CAS  Google Scholar 

  30. A. A. Polotsky, A. D. Kazakov, and T. M. Birshtein, Polymer 130, 242 (2017).

    Article  CAS  Google Scholar 

  31. A. M. Laradji, C. D. McNitt, N. S. Yadavalli, V. V. Popik, and S. Minko, Macromolecules 49, 7625 (2016).

    Article  CAS  Google Scholar 

  32. C. S. Turgman, J. Srogl, D. Kiserow, and J. Genzer, Langmuir 31, 2372 (2015).

    Article  CAS  Google Scholar 

  33. B. M. Berg, H. Vink, and J. A. E. Spaan, Circ. Res. 92, 592 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. S. T. Milner, Europhys. Lett. 7, 695 (1988).

    Article  CAS  Google Scholar 

  35. S. Milner, T. Witten, and M. Cates, Macromolecules 22, 853 (1989).

    Article  CAS  Google Scholar 

  36. W. M. de Vos and F. A. M. Leermakers, Polymer 50, 305 (2009).

    Article  CAS  Google Scholar 

  37. QiS. Shuanhu, L. I. Klushin, A. M. Skvortsov, and F. Schmid, Macromolecules 49, 9665 (2016).

    Article  CAS  Google Scholar 

  38. L. I. Klushin, A. M. Skvortsov, A. A. Polotsky, Qi S. Shuanhu, and F. Schmid, Phys. Rev. Lett. 113, 068303 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. M. Laradji, H. Guo, and M. J. Zuckermann, Phys. Rev. E: Stat. Phys., Plasma, Fluids, Relat. Interdiscip. Top. 49, 3199 (1994).

    Article  CAS  Google Scholar 

  40. Qi S. Shuanhu, L. I. Klushin, A. M. Skvortsov, A. A. Polotsky, and F. Schmid, Macromolecules 48, 3775 (2015).

    Article  CAS  Google Scholar 

  41. G. V. Schulz, Z. Phys. Chem. (Meunchen, Ger.) 43, 25 (1939).

    Google Scholar 

  42. B. Zimm, J. Chem. Phys. 16, 1099 (1948).

    Article  CAS  Google Scholar 

  43. A. M. Skvortsov, A. A. Gorbunov, and L. I. Klushin, Macromolecules 30, 1818 (1997).

    Article  CAS  Google Scholar 

  44. M. L. Mansfield, J. Chem. Phys. 88, 6570 (1988).

    Article  CAS  Google Scholar 

  45. A. M. Skvortsov, L. I. Klushin, and T. M. Birshtein, Polym. Sci., Ser. A 51 (5), 469 (2009).

    Article  Google Scholar 

  46. L. I. Klushin and A. M. Skvortsov, J. Phys. A: Math. Theor. 44, 473001 (2011).

    Article  CAS  Google Scholar 

  47. M. Challa, D. Landau, and K. Binder, Phase Transform. 24–26, 343 (1990).

    Article  Google Scholar 

  48. F. Brochard-Wyart, Europhys. Lett. 23, 105 (1993).

    Article  Google Scholar 

  49. F. Brochard-Wyart, Europhys. Lett. 30, 387 (1995).

    Article  CAS  Google Scholar 

  50. Y. Marciano and F. Brochard-Wyart, Macromolecules 28, 985 (1995).

    Article  CAS  Google Scholar 

  51. L. I. Klushin and A. M. Skvortsov, Vysokomol. Soedin., Ser. A 32 (8) (1990).

    Google Scholar 

  52. H. Gao, K. Min, and K. Matyjaszewski, Macromol. Chem. Phys. 207, 1709 (2006).

    Article  CAS  Google Scholar 

  53. T. Chang, J. Polym. Sci., Polym. Phys. Ed. 43, 1591 (2005).

    Article  CAS  Google Scholar 

  54. H. Pasch and B. Trathnigg, in Multidimensional HPLC of Polymers (Springer, New York, 2013).

    Book  Google Scholar 

  55. S. Zhang, S. Qi, L. I. Klushin, A. M. Skvortsov, D. Yan, and F. Schmid, J. Chem. Phys. 147, 064902 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. A. M. Skvortsov, L. I. Klushin, A. A. Polotsky, and K. Binder, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 85, 031803 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Skvortsov.

Additional information

Original Russian Text © L.I. Klushin, A.M. Skvortsov, S. Qi, F. Schmid, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya C, 2018, Vol. 60, No. 2, pp. 181–192.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klushin, L.I., Skvortsov, A.M., Qi, S. et al. Polydisperse Brush with the Linear Density Profile. Polym. Sci. Ser. C 60 (Suppl 1), 84–94 (2018). https://doi.org/10.1134/S1811238218020121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1811238218020121

Navigation