Skip to main content
Log in

Molecular models for ferroelectric liquid crystals with conventional and anomalously weak layer contraction

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A molecular theory of the ferroelectric smectic C* phase has been developed using the simple model of a chiral molecule composed of a uniaxial core and a pair of off-center nonparallel dipoles which determine molecular chirality and polarity. The interaction between uniaxial cores is modeled by a rather general effective potential which can be used to describe smectic materials with both conventional and anomalously weak layer contraction in the smectic C* phase. Spontaneous polarization, tilt, and layer spacing are calculated numerically as functions of temperature, and it is shown that the variation of the polarization generally deviates from that of the tilt angle. It is shown that this deviation is more pronounced in smectic materials tilting with low layer contraction which corresponds to existing experimental data. The model has been used to reproduce qualitatively the experimental data for polarization, tilt and layer spacing for two similar mixtures exhibiting conventional and anomalously weak layer contraction. The polarization and the tilt are also calculated in the case when the smectic A-smectic C* transition is characterized by the biaxial primary order parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P.F. Lagerwall, F. Giesselmann, ChemPhysChem 7, 20 (2006).

    Article  Google Scholar 

  2. S. Jaradat, N.W. Roberts, Y. Wang, L.S. Hirst, H.F. Gleeson, J. Mater. Chem. 16, 3753 (2006).

    Article  Google Scholar 

  3. G. Pelz, S. Diele, W. Weissflog, Adv. Mater. 11, 707 (1999).

    Article  Google Scholar 

  4. J. Naciri, J. Ruth, G. Crawford, R. Shashidhar, B.R. Ratna, Chem. Mater. 7, 1397 (1995).

    Article  Google Scholar 

  5. M.D. Radcliffe, M.L. Brostrom, K.A. Epstein, A.G. Rappaport, B.N. Thomas, R.F. Shao, N.A. Clark, Liq. Cryst. 26, 789 (1999).

    Article  Google Scholar 

  6. F. Giesselmann, P. Zugenmaier, I. Dierking, S.T. Lager-wall, B. Stebler, M. Kaspar, V. Hamplova, M. Glogarova, Phys. Rev. E 60, 598 (1999).

    Article  ADS  Google Scholar 

  7. Y. Takanishi, Y. Ouchi, H. Takezoe, A. Fukuda, A. Mochizuki, M. Nakatsuka, Jpn. J. Appl. Phys. Lett. 29, L984 (1990).

    Article  ADS  Google Scholar 

  8. A. de Vries, Mol. Cryst. Liq. Cryst. 11, 361 (1970).

    Article  Google Scholar 

  9. A. de Vries, J. Chem. Phys. 71, 25 (1979).

    Article  ADS  Google Scholar 

  10. A. de Vries, Mol. Cryst. Liq. Cryst. 41, 27 (1977).

    Article  Google Scholar 

  11. A. de Vries, A. Ekachai, N. Spielberg, Mol. Cryst. Liq. Cryst. Lett. 49, 143 (1979).

    Article  Google Scholar 

  12. A. de Vries, in Advances in Liquid Crystal Research and Applications, edited by L. Bata (Pergamon Press, Oxford, 1980).

    Google Scholar 

  13. M.V. Gorkunov, F. Giesselmann, J.P.F. Lagerwall, T.J. Sluckin, M.A. Osipov, Phys. Rev. E 75, 060701(R) (2007).

  14. M.V. Gorkunov, F. Giesselmann, J.P.F. Lagerwall, M.A. Osipov, Phys. Rev. E 76, 051706 (2007).

    Google Scholar 

  15. H.F. Gleeson, Y. Wang, S. Watson, D. Sahagun-Sanchez, J.W. Goodby, M. Hird, A. Petrenko, M.A. Osipov, J. Mater. Chem. 14, 1480 (2004).

    Article  Google Scholar 

  16. J.P.F. Lagerwall, A. Saipa, F. Giesselmann, R. Dabrowski, Liq. Cryst. 31, 1175 (2004).

    Article  Google Scholar 

  17. D. Vizitiu, C. Lazar, B.J. Halden, R.P. Lemieux, J. Am. Chem. Soc. 121, 8229 (1999).

    Article  Google Scholar 

  18. D. Vizitiu, C. Lazar, J.P. Radke, C.S. Hartley, M.A. Glaser, R.P. Lemieux, Chem. Mater. 13, 1692 (2001).

    Article  Google Scholar 

  19. C. Lazar, K. Yang, M.A. Glaser, M.D. Wand, R.P. Lemieux, J. Mater. Chem. 12, 586 (2002).

    Article  Google Scholar 

  20. C.J. Boulton, J.G. Finden, E. Yuh, J.J. Sutherland, M.D. Wand, G. Wu, R.P. Lemieux, J. Am. Chem. Soc. 127, 13656 (2005).

    Google Scholar 

  21. R. Berardi, S. Orlandi, C. Zannoni, Phys. Rev. E 67, 041708 (2003).

    Google Scholar 

  22. F. Giesselmann, P. Zugenmaier, Phys. Rev. E 55, 5613 (1997).

    Article  ADS  Google Scholar 

  23. R. Korlacki, A. Fukuda, J.K. Vij, Europhys. Lett. 77, 36004 (2007).

    Google Scholar 

  24. M.A. Osipov, in Handbook of Liquid Crystals, edited by D. Demus, J. Goodby, G.W. Gray, H.-W. Spies, V. Vill, Vol. 1, 2nd edition (Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  25. M.A. Osipov, M.V. Gorkunov, Phys. Rev. E 77, 031701 (2008).

    Google Scholar 

  26. J.P. Straley, Phys. Rev. A 10, 1881 (1974).

    Article  ADS  Google Scholar 

  27. W.M. Gelbart, B. Barboi, Acc. Chem. Res. 13, 290 (1980).

    Article  Google Scholar 

  28. M.P. Neal, A.J. Parker, Chem. Phys. Lett. 294, 277 (1998). 417–425 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Osipov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osipov, M.A., Gorkunov, M.V., Gleeson, H.F. et al. Molecular models for ferroelectric liquid crystals with conventional and anomalously weak layer contraction. Eur. Phys. J. E 26, 395–404 (2008). https://doi.org/10.1140/epje/i2008-10339-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10339-x

PACS

Navigation