Skip to main content
Log in

Bridging dielectric fluids by light: A ray optics approach

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Rayleigh-Plateau instability is known to impose a stability limit for the length of a liquid bridge in weightless conditions. This fundamental limit may be exceeded by using a light field to form and stabilize dielectric fluid bridges (A. Casner, J.P. Delville, Europhys. Lett. 65, 337 (2004)). Using both new experimental data as well as a new theoretical approach, we show that both the size and the stability of such light-sustained dielectric bridge can be qualitatively explained. We present a ray optics model that encompasses the competition between surface tension effects and optical radiation pressure arising from total internal reflection inside the bridge. A critical power below which a liquid bridge can no longer be sustained by light is predicted and confirmed experimentally. The observed power dependence of the bridge diameter also agrees with the proposed stabilization mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Meseguer, J.M. Perales, I. Martinez, N.A. Bezdenejnykh, A. Sanz, Curr. Topics Crystal Growth Res. 5, 27 (1999).

    Google Scholar 

  2. M. Wu, T. Cubaud, C.-M. Ho, Phys. Fluids 16, L51 (2004).

    Article  ADS  Google Scholar 

  3. W. Wei, D.B. Thiessen, P.L. Marston, Phys. Rev. E 72, 067304 (2005).

    Article  ADS  Google Scholar 

  4. J. Eggers, Rev. Mod. Phys. 69, 865 (1997).

    Article  ADS  Google Scholar 

  5. J. Plateau, Ann. Phys. Chem. 80, 566 (1850).

    Article  ADS  Google Scholar 

  6. M.P. Mahajan, S. Zhang, M. Tsige, P.L. Taylor, C. Rosenblatt, J. Colloid Interface Sci. 213, 592 (1999).

    Article  Google Scholar 

  7. C.L. Burcham, D.A. Saville, J. Fluid Mech. 405, 37 (2000).

    Article  MATH  ADS  Google Scholar 

  8. M.J. Marr-Lyon, D.B. Thiessen, F.L. Blonigen, P.L. Marston, Phys. Fluids 12, 986 (2000).

    Article  ADS  Google Scholar 

  9. M.J. Marr-Lyon, D.B. Thiessen, P.L. Marston, Phys. Rev. Lett. 86, 2293 (2001); 86, 2293 (2001)(E).

    Article  ADS  Google Scholar 

  10. M.J. Marr-Lyon, D.B. Thiessen, P.L. Marston, J. Fluid Mech. 351, 345 (1997).

    Article  ADS  Google Scholar 

  11. H. Gonzales, F.M.J. McCluskey, A. Castellanos, A. Barrero, J. Fluid. Mech. 206, 545 (1989).

    Article  ADS  Google Scholar 

  12. A. Casner, J.P. Delville, Europhys. Lett. 65, 337 (2004).

    Article  ADS  Google Scholar 

  13. R.D. Schroll, R. Wunenburger, A. Casner, W.W. Zhang, J.P. Delville, Phys. Rev. Lett. 98, 133601 (2007).

    Article  ADS  Google Scholar 

  14. A. Casner, J.P. Delville, Phys. Rev. Lett. 87, 054503 (2001).

    Article  ADS  Google Scholar 

  15. R. Wunenburger, A. Casner, J.P. Delville, Phys. Rev. E 73, 036314 (2006).

    Article  ADS  Google Scholar 

  16. A. Casner, J.P. Delville, Phys. Rev. Lett. 90, 144503 (2003).

    Article  ADS  Google Scholar 

  17. H. Chraïbi, D. Lasseux, E. Arquis, R. Wunenburger, J.-P. Delville, Eur. J. Mech. B/Fluids 27, 419 (2008).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Brasselet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroll, R.D., Brasselet, E., Zhang, W.W. et al. Bridging dielectric fluids by light: A ray optics approach. Eur. Phys. J. E 26, 405–409 (2008). https://doi.org/10.1140/epje/i2008-10336-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10336-1

PACS

Navigation