Skip to main content
Log in

Relaxation processes of water confined to AlMCM-41 molecular sieves. Influence of the hydroxyl groups of the pore surface

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A series of AlMCM-41 molecular sieves was prepared with constant composition (Si/Al = 14.7) and presumably same pore structure but different pore diameters (from 2.3 to 4.6 nm). The pore size distribution is narrow for each sample. The rotational fluctuations of water molecules confined inside the pores were investigated applying broadband dielectric spectroscopy (10−2–107 Hz) over a large temperature interval (213–333K). A relaxation process, slower than that expected for bulk water, was observed which is assigned to water molecules forming a surface layer on the pore walls. The estimated relaxation time has an unusual non-monotonic temperature dependence, which is rationalized and modeled assuming two competing processes: rotational fluctuations of constrained water molecules and defect formation (Ryabov model). This paper focuses on the defects and notably the influence of the hydroxyl groups of the pore walls. The Ryabov model is fitted to the data and characteristic parameters are obtained. Their dependence on pore diameter is considered for the first time. The found results are compared with those obtained for other types of molecular sieves and related materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.V. Neimark, P.I. Ravikovitch, A. Vishnyakov, Phys. Rev. E 62, R1493 (2000); P.I. Ravikovitch, A.V. Neimark, Langmuir 18, 1550 (2002).

    Article  ADS  Google Scholar 

  2. P. Gallo, M.A. Ricci, M. Rovere, J. Chem. Phys. 116, 342 (2002); B. Kuchta, P. Llewellyn, R. Denoyel, L. Firlej, Low Temp. Phys. 29, 880 (2003).

    Article  ADS  Google Scholar 

  3. See, e.g., P. Trens, N. Tanchoux, P.-M. Papineschi, D. Maldonado, F. di Renzo, F. Fajula, Micropor. Mesopor. Mater. 86, 354 (2005); D.W. Aksnes, K. Forland, M. Stöcker, Micropor. Mesopor. Mater. 77, 79 (2005).

    Article  Google Scholar 

  4. K. Bhattacharyya, B. Bagchi, J. Phys. Chem. A 104, 10603 (2000).

    Google Scholar 

  5. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, T. Yamaguchi, J. Phys. Chem. B 103, 5814 (1999)

    Article  Google Scholar 

  6. T. Takamuku, M. Yamagami, H. Wakita, Y. Masuda, T. Yamaguchi, J. Phys. Chem. B 101, 5730 (1997)

    Article  Google Scholar 

  7. T. Yamaguchi, K. Yoshida, P. Smirnov, T. Takamuku, S. Kittaka, S. Takahara, Y. Kuroda, M.C. Bellissent-Funel, Eur. Phys. J. ST 141, 19 (2007).

    Google Scholar 

  8. J. Swenson, H. Jansson, W.S. Howells, S. Longeville, J. Chem. Phys. 122, 084505 (2005).

    Google Scholar 

  9. S. Mashimo, S. Kuwabara, S. Yagihara, K. Higasi, J. Phys. Chem. 91, 6337 (1987); M. Fukuzaki, N. Miura, N. Sinyashiki, D. Kunita, S. Shiyoya, M. Haida, S. Mashimo, J. Phys. Chem. 99, 431 (1995).

    Article  Google Scholar 

  10. L.W. Wang, Q. Wang, C.X. Li, X.J. Niu, G. Sun, K.Q. Lu, Phys. Rev. B 76, 155437 (2007).

    Google Scholar 

  11. G. Sinha, J. Leys, M. Wübbenhorst, C. Glorieux, J. Thoen, Int. J. Thermophys. 28, 616 (2007).

    Article  Google Scholar 

  12. R. Bergman, J. Swenson, L. Borjesson, P. Jacobsson, J. Chem. Phys. 113, 357 (2000); H. Jansson, J. Swenson, Eur. Phys. J. E 12, 013 (2003).

    Article  ADS  Google Scholar 

  13. J. Banys, M. Kinka, J. Macutkevic, G. Volkel, W. Bohlmann, V. Umamaheswari, M. Hartmann, A. Poppl, J. Phys.: Condens. Matter 17, 2843 (2005).

    Article  ADS  Google Scholar 

  14. N. Nandi, B. Bagchi, J. Phys. Chem. B 101, 10954 (1997); N. Nandi, B. Bagchi, J. Phys. Chem. A 102, 8217 (1998).

    Article  Google Scholar 

  15. V.P. Denisov, K. Venu, J. Peters, H.D. Horlein, B. Halle, J. Phys. Chem. B 101, 9380 (1997).

    Article  Google Scholar 

  16. V. Crupi, D. Majolino, P. Migliardo, V. Venuti, J. Phys. Chem. B 106, 10884 (2002); V. Crupi, D. Majolino, P. Migliardo, V. Venuti, U. Wanderlingh, T. Mizota, M. Telling, J. Phys. Chem. B 108, 4314 (2004); V. Crupi, F. Longo, D. Majolino, V. Venuti, Eur. Phys. J. ST 141, 61 (2007).

    Article  Google Scholar 

  17. D.W. Hwang, A.K. Sinha, C.-Y. Cheng, T.-Y. Yu, L.-P. Hwang, J. Phys. Chem. B 105, 5713 (2001).

    Article  Google Scholar 

  18. A. Faraone, L. Liu, Ch.-Y. Mou, P.-Ch. Shih, J.R.D. Copley, S.-H. Chen, J. Chem. Phys. 199, 3963 (2003).

    Article  ADS  Google Scholar 

  19. A. Gutina, E. Axelrod, A. Puzenko, E. Rysiakiewicz-Pasek, N. Kozlovich, Yu. Feldman, J. Non-Cryst. Solids 235–237, 302 (1998).

    Article  Google Scholar 

  20. Ya. Ryabov, A. Gutina, V. Arkhipov, Yu. Feldman, J. Phys. Chem. B 105, 1845 (2001).

    Article  Google Scholar 

  21. L. Frunza, H. Kosslick, S. Frunza, A. Schönhals, J. Phys. Chem. B 106, 9191 (2002)

    Article  Google Scholar 

  22. L. Frunza, H. Kosslick, I. Pitsch, S. Frunza, A. Schönhals, J. Phys. Chem. B 109, 9154 (2005)

    Article  Google Scholar 

  23. L. Frunza, A. Schönhals, S. Frunza, V.I. Parvulescu, B. Cojocaru, D. Carriazo, C. Martin, V. Rives, J. Phys. Chem. A 111, 5166 (2007).

    Article  Google Scholar 

  24. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992); J.S. Beck, J.C. Vartuli,W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmidt, C.T.-W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.C. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).

    Article  ADS  Google Scholar 

  25. S. Frunza, H. Kosslick, A. Schönhals, L. Frunza, I. Enache, T. Beica, J. Non-Cryst. Solids 325, 103 (2003).

    Article  ADS  Google Scholar 

  26. F. Kremer, A. Schönhals, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer-Verlag, Berlin, 2002) pp. 35 and following

    Google Scholar 

  27. A. Schönhals, F. Kremer, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer-Verlag, Berlin, 2002) pp. 59 and following

    Google Scholar 

  28. A. Schönhals, F. Kremer, in Broadband Dielectric Spectroscopy, edited by F. Kremer, A. Schönhals (Springer-Verlag, Berlin, 2002) pp. 1 and following.

    Google Scholar 

  29. P.A. Russo, M.M.L. Ribeiro Carrott, A. Padre-Eterno, P.J.M. Carrott, P.I. Ravikovitch, A.V. Neimark, Micropor. Mesopor. Mater. 103, 82 (2007).

    Article  Google Scholar 

  30. K. Morishige, H. Iwasaki, Langmuir 19, 2808 (2003).

    Article  Google Scholar 

  31. P. Pissis, J. Laudat, D. Daoukaki, A. Kyritsis, J. Non-Cryst. Solids 171, 201 (1994).

    Article  ADS  Google Scholar 

  32. A. Puzenko, N. Kozlovich, A. Gutina, Yu. Feldman, Phys. Rev. B 60, 14349 (1999).

    Article  ADS  Google Scholar 

  33. A. Gutina, T. Antropova, E. Rysiakiewicz-Pasek, K. Virnik, Y. Feldman, Micropor. Mesopor. Materials 58, 237 (2003).

    Article  Google Scholar 

  34. Y. Feldman, A. Puzenko, Y. Ryabov, Chem. Phys. 284, 139 (2003).

    Article  ADS  Google Scholar 

  35. Ch. Cramer, Th. Cramer, M. Arndt, F. Kremer, L. Naji, R. Stannarius, Mol. Cryst. Liq. Cryst. 303, 209 (1997); S.A. Rozanski, R. Stannarius, H. Groothues, F. Kremer, Liq. Cryst. 20, 59 (1996).

    Article  Google Scholar 

  36. F.M. Aliev, G. Sinha, Mater. Res. Soc. Proc. 411, 125 (1996).

    Google Scholar 

  37. S. Frunza, A. Schönhals, L. Frunza, H.-L. Zubowa, H. Kosslick, R. Fricke, H. Carius, Chem. Phys. Lett. 307, 167 (1999).

    Article  ADS  Google Scholar 

  38. R. Podeszwa, V. Buch, Phys. Rev. Lett. 83, 4570 (1999).

    Article  ADS  Google Scholar 

  39. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G.H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. Eur. J. 10, 5689 (2004).

    Article  Google Scholar 

  40. J.C. Dyre, J. Phys. C Solid State Phys. 19, 5655 (1986); A. Yelojn, B. Movaghar, H.M. Brantz, Phys. Rev. B, 46, 1244 (1992).

    Article  ADS  Google Scholar 

  41. Y.E. Ryabov, A. Puzenko, Y. Feldman, Phys. Rev. B 69, 014204 (2004).

    Google Scholar 

  42. M. Cammarata, M. Levantino, A. Cupane, A. Longo, A. Martorana, F. Bruni, Eur. Phys. J. E 12, 016 (2003).

    Article  Google Scholar 

  43. M.-C. Bellissent-Funel, J. Lal, L. Bosio, J. Chem. Phys. 98, 4246 (1993); M.-C. Bellissent-Funel, K.F. Bradley, S.H. Chen, J. Lal, J. Teixeira, Physica A 201, 277 (1993); M.-C. Bellissent-Funel, S.H. Chen, J.-M. Zanotti, Phys. Rev. E 51, 4558 (1995).

    Article  ADS  Google Scholar 

  44. E.W. Hansen, M. Stöcker, R. Schmidt, J. Phys. Chem. 100, 2195 (1996).

    Article  Google Scholar 

  45. N. Floquet, P. Coulomb, N. Dufau, G. Andre, R. Kahn, Adsorption 11, 139 (2005).

    Article  Google Scholar 

  46. J.-M. Zanotti, M.C. Bellissent-Funel, A.I. Kolesnikov, Eur. Phys. J. ST 141, 227 (2007).

    Google Scholar 

  47. J. Hedström, J. Swenson, R. Bergman, H. Jansson, S. Kittaka, Eur. Phys. J. ST 141, 53 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Frunza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frunza, L., Schönhals, A., Kosslick, H. et al. Relaxation processes of water confined to AlMCM-41 molecular sieves. Influence of the hydroxyl groups of the pore surface. Eur. Phys. J. E 26, 379–386 (2008). https://doi.org/10.1140/epje/i2007-10340-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10340-y

PACS

Navigation