The European Physical Journal E

, Volume 21, Issue 1, pp 41–48 | Cite as

Wormlike lipid/DNA micelles in a non-polar solvent

  • A. Hohner
  • J. Bayer
  • J. O. Rädler
Regular Article

Abstract.

The phase behavior of DOPE/DOTAP-DNA complexes in phase-separated oil(dodecane)/water mixtures was explored using Small Angle X-Ray Scattering (SAXS) and Fluorescence Correlation Spectroscopy (FCS). Inverse micelles of DNA with cationic-lipid coating were found in the oil phase. Varying the ratio between cationic and neutral lipids a transition from wormlike to spherical structures is observed for both long ( ≈ 75000bp) and short (30-1246bp) DNA. In contrast to lipid/DNA complexes in the water phase, there is no indication of condensed liquid-crystalline structures in the non-polar phase. In fact, FCS measurements on short DNA oligomers complexed with cationic lipid in alkane give clear evidence for monomeric inverse micelles of DNA. Dilution series revealed a critical lower concentration of lipids and DNA for observing lipid/DNA micelles.

PACS.

83.80.Qr Surfactant and micellar systems, associated polymers 87.14.Cc Lipids 87.14.Gg DNA, RNA 87.64.Bx Electron, neutron and X-ray diffraction and scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Holmberg, B. Jönsson, B Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution (John Wiley Sons Ltd, 2003).Google Scholar
  2. 2.
    J.M. Seddon, R.H. Templer, Polymorphism of lipid-water systems, in R. Lipowsky, E. Sackmann (Editors), Handbook of Biological Physics, Volume 1 (Elsevier Science B.V., 1995) pp. 97--160.Google Scholar
  3. 3.
    L.J. Magid, J. Phys. Chem. B 102, 4064 (1998).CrossRefGoogle Scholar
  4. 4.
    J.S. Pedersen, P. Schurtenberger, J. Appl. Crystallogr. 29, 646 (1996).CrossRefGoogle Scholar
  5. 5.
    P. Schurtenberger, G. Jerke, C. Cavaco, J.S. Pedersen, Langmuir 12, 2433 (1996).CrossRefGoogle Scholar
  6. 6.
    C. Sommer, J.S. Pedersen, S.U. Egelhaaf, L. Cannavacciuolo, J. Kohlbrecher, P. Schurtenberger, Langmuir 18, 2495 (2002).CrossRefGoogle Scholar
  7. 7.
    P.L. Felgner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, G.M. Ringold, M. Danielsen, Proc. Natl. Acad. Sci. U.S.A. 84, 7413 (1987).CrossRefADSGoogle Scholar
  8. 8.
    A.D. Miller, Angew. Chem., Int. Ed. 37, 1768 (1998).CrossRefGoogle Scholar
  9. 9.
    J.O. Rädler, I. Koltover, T. Salditt, C.R. Safinya, Science 275, 810 (1997).CrossRefGoogle Scholar
  10. 10.
    C.R. Safinya, Curr. Opin. Struct. Biol. 11, 440 (2001).CrossRefGoogle Scholar
  11. 11.
    I. Koltover, T. Salditt, J.O. Rädler, C.R. Safinya, Science 281, 78 (1998).CrossRefADSGoogle Scholar
  12. 12.
    D.L. Reimer, Y.P. Zhang, S. Kong, J.J. Wheeler, R.W. Graham, M.B. Bally, Biochemistry 34, 12877 (1995).CrossRefGoogle Scholar
  13. 13.
    F.M.P. Wong, D.L. Reimer, M.B. Bally, Biochemistry 35, 5756 (1996).CrossRefGoogle Scholar
  14. 14.
    D.M. McLoughlin, J. O'Brien, J.J. McManus, A.V. Gorelov, K.A. Dawson, Bioseparation 9, 307 (2001).CrossRefGoogle Scholar
  15. 15.
    M. Airoldi, C.A. Boicelli, G. Gennaro, Phys. Chem. Chem. Phys. 2, 4636 (2000).CrossRefGoogle Scholar
  16. 16.
    M. Airoldi, C.A. Boicelli, G. Gennaro, M. Giomini, A.M. Giuliani, M. Giustini, L. Scibetta, Phys. Chem. Chem. Phys. 4, 3859 (2002).CrossRefGoogle Scholar
  17. 17.
    V.E. Imre, P.L. Luisi, Biochem. Biophys. Res. Commun. 107, 538 (1982).Google Scholar
  18. 18.
    S. Osfouri, P. Stano, P.L. Luisi, J. Phys. Chem. B 109, 19929 (2005).CrossRefGoogle Scholar
  19. 19.
    A.V. Pietrini, P.L. Luisi, Biochim. Biophys. Acta Biomembranes 1562, 57 (2002).CrossRefGoogle Scholar
  20. 20.
    A.K. Shaw, R. Sarkar, S.K. Pal, Chem. Phys. Lett. 408, 366 (2005).CrossRefADSGoogle Scholar
  21. 21.
    M.A. Abdalla, J. Bayer, J.O. Rädler, K. Müllen, Nucleosides Nucleotides Nucl. Acids 22, 1399 (2003).CrossRefGoogle Scholar
  22. 22.
    M.A. Abdalla, J. Bayer, J.O. Rädler, K. Müllen, Angew. Chem., Int. Ed. 43, 3967 (2004).MathSciNetCrossRefGoogle Scholar
  23. 23.
    K. Wagner, D. Harries, S. May, V. Kahl, J.O. Rädler, A. Ben-Shaul, Langmuir 16, 303 (2000).CrossRefGoogle Scholar
  24. 24.
    E.L. Elson, D. Magde, Biopolymers 13, 1 (1974).CrossRefGoogle Scholar
  25. 25.
    O. Krichevsky, G. Bonnet, Rep. Prog. Phys. 65, 251 (2002).CrossRefADSGoogle Scholar
  26. 26.
    D. Magde, E.L. Elson, Biopolymers 13, 29 (1974).CrossRefGoogle Scholar
  27. 27.
    R. Rigler, U. Mets, J. Widengren, P. Kask, Eur. Biophys. J. Biophys. Lett. 22, 169 (1993).Google Scholar
  28. 28.
    J.G. dela Torre, M.C.L. Martinez, M.M. Tirado, Biopolymers 23, 611 (1984).MathSciNetCrossRefGoogle Scholar
  29. 29.
    J. Widengren, P. Schwille, J. Phys. Chem. A 104, 6416 (2000).CrossRefGoogle Scholar
  30. 30.
    J.S. Pedersen, Modelling of small-angle scattering data from colloids and polymer systems, in P. Lindner, T. Zemb (Editors), Neutrons, X-Rays and Light (Elsevier Science, 2002) pp. 391--420.Google Scholar
  31. 31.
    D.J. Kinning, E.L. Thomas, Macromolecules 17, 1712 (1984).CrossRefGoogle Scholar
  32. 32.
    R. Klein, Interacting colloidal suspensions, in P. Lindner, T. Zemb (Editors), Neutrons, X-Rays and Light (Elsevier Science, 2002) pp. 351--379.Google Scholar
  33. 33.
    G. Jerke, J.S. Pedersen, S.U. Egelhaaf, P. Schurtenberger, Phys. Rev. E 56, 5772 (1997).CrossRefADSGoogle Scholar
  34. 34.
    A. Kholodenko, M. Ballauff, M.A. Granados, Physica A 260, 267 (1998).CrossRefGoogle Scholar
  35. 35.
    J.S. Pedersen, Curr. Opin. Colloid Interface Sci. 4, 190 (1999).CrossRefGoogle Scholar
  36. 36.
    V. Castelletto, R. Itri, L.Q. Amaral, G.P. Spada, Macromolecules 28, 8395 (1995).CrossRefGoogle Scholar
  37. 37.
    K.S. Schweizer, J.G. Curro, Adv. Polym. Sci. 116, 319 (1994).CrossRefGoogle Scholar
  38. 38.
    J.S. Pedersen. Adv. Colloid Interface Sci. 70, 171 (1997).Google Scholar
  39. 39.
    K.S. Schweizer, J.G. Curro, Chem. Phys. 149, 105 (1990).CrossRefADSGoogle Scholar
  40. 40.
    Z. Chen, R.P. Rand, Biophys. J. 74, 944 (1998).CrossRefGoogle Scholar
  41. 41.
    R.M. Epand, N. Fuller, R.P. Rand, Biophys. J. 71, 1806 (1996).Google Scholar
  42. 42.
    D.P. Siegel, J. Banschbach, P.L. Yeagle, Biochemistry 28, 5010 (1989).CrossRefGoogle Scholar
  43. 43.
    M. Nakano, J. Komatsu, S. Matsuura, K. Takashima, S. Katsura, A. Mizuno, J. Biotechnol. 102, 117 (2003).CrossRefGoogle Scholar
  44. 44.
    P.L. Luisi, Anat. Rec. 268, 208 (2002).CrossRefGoogle Scholar
  45. 45.
    B. Orlich, R. Schomacker, Enzyme catalysis in reverse micelles, in History and Trends in Bioprocessing and Biotransformation, Adv. Biochem. Eng. Biotechnol. 75, 185 (2002).Google Scholar
  46. 46.
    L.C. Park, T. Maruyama, M. Goto, Analyst 128, 161 (2003).CrossRefADSGoogle Scholar
  47. 47.
    T. Shangguan, D. Cabral-Lilly, U. Purandare, N. Godin, P. Ahl, A. Janoff, P. Meers, Gene Therapy 7, 769 (2000).CrossRefGoogle Scholar
  48. 48.
    A. Huczko, Appl. Phys. A: Mater. Sci. Processing 70, 365 (2000).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2006

Authors and Affiliations

  • A. Hohner
    • 1
  • J. Bayer
    • 1
  • J. O. Rädler
    • 1
  1. 1.Geschwister-Scholl-Platz 1Ludwig-Maximilians-UniversitätMünchenGermany

Personalised recommendations