Skip to main content
Log in

Wormlike lipid/DNA micelles in a non-polar solvent

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The phase behavior of DOPE/DOTAP-DNA complexes in phase-separated oil(dodecane)/water mixtures was explored using Small Angle X-Ray Scattering (SAXS) and Fluorescence Correlation Spectroscopy (FCS). Inverse micelles of DNA with cationic-lipid coating were found in the oil phase. Varying the ratio between cationic and neutral lipids a transition from wormlike to spherical structures is observed for both long ( ≈ 75000bp) and short (30-1246bp) DNA. In contrast to lipid/DNA complexes in the water phase, there is no indication of condensed liquid-crystalline structures in the non-polar phase. In fact, FCS measurements on short DNA oligomers complexed with cationic lipid in alkane give clear evidence for monomeric inverse micelles of DNA. Dilution series revealed a critical lower concentration of lipids and DNA for observing lipid/DNA micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Holmberg, B. Jönsson, B Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution (John Wiley Sons Ltd, 2003).

  2. J.M. Seddon, R.H. Templer, Polymorphism of lipid-water systems, in R. Lipowsky, E. Sackmann (Editors), Handbook of Biological Physics, Volume 1 (Elsevier Science B.V., 1995) pp. 97--160.

  3. L.J. Magid, J. Phys. Chem. B 102, 4064 (1998).

    Article  Google Scholar 

  4. J.S. Pedersen, P. Schurtenberger, J. Appl. Crystallogr. 29, 646 (1996).

    Article  Google Scholar 

  5. P. Schurtenberger, G. Jerke, C. Cavaco, J.S. Pedersen, Langmuir 12, 2433 (1996).

    Article  Google Scholar 

  6. C. Sommer, J.S. Pedersen, S.U. Egelhaaf, L. Cannavacciuolo, J. Kohlbrecher, P. Schurtenberger, Langmuir 18, 2495 (2002).

    Article  Google Scholar 

  7. P.L. Felgner, T.R. Gadek, M. Holm, R. Roman, H.W. Chan, M. Wenz, J.P. Northrop, G.M. Ringold, M. Danielsen, Proc. Natl. Acad. Sci. U.S.A. 84, 7413 (1987).

    Article  ADS  Google Scholar 

  8. A.D. Miller, Angew. Chem., Int. Ed. 37, 1768 (1998).

    Article  Google Scholar 

  9. J.O. Rädler, I. Koltover, T. Salditt, C.R. Safinya, Science 275, 810 (1997).

    Article  Google Scholar 

  10. C.R. Safinya, Curr. Opin. Struct. Biol. 11, 440 (2001).

    Article  Google Scholar 

  11. I. Koltover, T. Salditt, J.O. Rädler, C.R. Safinya, Science 281, 78 (1998).

    Article  ADS  Google Scholar 

  12. D.L. Reimer, Y.P. Zhang, S. Kong, J.J. Wheeler, R.W. Graham, M.B. Bally, Biochemistry 34, 12877 (1995).

    Article  Google Scholar 

  13. F.M.P. Wong, D.L. Reimer, M.B. Bally, Biochemistry 35, 5756 (1996).

    Article  Google Scholar 

  14. D.M. McLoughlin, J. O'Brien, J.J. McManus, A.V. Gorelov, K.A. Dawson, Bioseparation 9, 307 (2001).

    Article  Google Scholar 

  15. M. Airoldi, C.A. Boicelli, G. Gennaro, Phys. Chem. Chem. Phys. 2, 4636 (2000).

    Article  Google Scholar 

  16. M. Airoldi, C.A. Boicelli, G. Gennaro, M. Giomini, A.M. Giuliani, M. Giustini, L. Scibetta, Phys. Chem. Chem. Phys. 4, 3859 (2002).

    Article  Google Scholar 

  17. V.E. Imre, P.L. Luisi, Biochem. Biophys. Res. Commun. 107, 538 (1982).

    Google Scholar 

  18. S. Osfouri, P. Stano, P.L. Luisi, J. Phys. Chem. B 109, 19929 (2005).

    Article  Google Scholar 

  19. A.V. Pietrini, P.L. Luisi, Biochim. Biophys. Acta Biomembranes 1562, 57 (2002).

    Article  Google Scholar 

  20. A.K. Shaw, R. Sarkar, S.K. Pal, Chem. Phys. Lett. 408, 366 (2005).

    Article  ADS  Google Scholar 

  21. M.A. Abdalla, J. Bayer, J.O. Rädler, K. Müllen, Nucleosides Nucleotides Nucl. Acids 22, 1399 (2003).

    Article  Google Scholar 

  22. M.A. Abdalla, J. Bayer, J.O. Rädler, K. Müllen, Angew. Chem., Int. Ed. 43, 3967 (2004).

    Article  MathSciNet  Google Scholar 

  23. K. Wagner, D. Harries, S. May, V. Kahl, J.O. Rädler, A. Ben-Shaul, Langmuir 16, 303 (2000).

    Article  Google Scholar 

  24. E.L. Elson, D. Magde, Biopolymers 13, 1 (1974).

    Article  Google Scholar 

  25. O. Krichevsky, G. Bonnet, Rep. Prog. Phys. 65, 251 (2002).

    Article  ADS  Google Scholar 

  26. D. Magde, E.L. Elson, Biopolymers 13, 29 (1974).

    Article  Google Scholar 

  27. R. Rigler, U. Mets, J. Widengren, P. Kask, Eur. Biophys. J. Biophys. Lett. 22, 169 (1993).

    Google Scholar 

  28. J.G. dela Torre, M.C.L. Martinez, M.M. Tirado, Biopolymers 23, 611 (1984).

    Article  MathSciNet  Google Scholar 

  29. J. Widengren, P. Schwille, J. Phys. Chem. A 104, 6416 (2000).

    Article  Google Scholar 

  30. J.S. Pedersen, Modelling of small-angle scattering data from colloids and polymer systems, in P. Lindner, T. Zemb (Editors), Neutrons, X-Rays and Light (Elsevier Science, 2002) pp. 391--420.

  31. D.J. Kinning, E.L. Thomas, Macromolecules 17, 1712 (1984).

    Article  Google Scholar 

  32. R. Klein, Interacting colloidal suspensions, in P. Lindner, T. Zemb (Editors), Neutrons, X-Rays and Light (Elsevier Science, 2002) pp. 351--379.

  33. G. Jerke, J.S. Pedersen, S.U. Egelhaaf, P. Schurtenberger, Phys. Rev. E 56, 5772 (1997).

    Article  ADS  Google Scholar 

  34. A. Kholodenko, M. Ballauff, M.A. Granados, Physica A 260, 267 (1998).

    Article  Google Scholar 

  35. J.S. Pedersen, Curr. Opin. Colloid Interface Sci. 4, 190 (1999).

    Article  Google Scholar 

  36. V. Castelletto, R. Itri, L.Q. Amaral, G.P. Spada, Macromolecules 28, 8395 (1995).

    Article  Google Scholar 

  37. K.S. Schweizer, J.G. Curro, Adv. Polym. Sci. 116, 319 (1994).

    Article  Google Scholar 

  38. J.S. Pedersen. Adv. Colloid Interface Sci. 70, 171 (1997).

  39. K.S. Schweizer, J.G. Curro, Chem. Phys. 149, 105 (1990).

    Article  ADS  Google Scholar 

  40. Z. Chen, R.P. Rand, Biophys. J. 74, 944 (1998).

    Article  Google Scholar 

  41. R.M. Epand, N. Fuller, R.P. Rand, Biophys. J. 71, 1806 (1996).

    Google Scholar 

  42. D.P. Siegel, J. Banschbach, P.L. Yeagle, Biochemistry 28, 5010 (1989).

    Article  Google Scholar 

  43. M. Nakano, J. Komatsu, S. Matsuura, K. Takashima, S. Katsura, A. Mizuno, J. Biotechnol. 102, 117 (2003).

    Article  Google Scholar 

  44. P.L. Luisi, Anat. Rec. 268, 208 (2002).

    Article  Google Scholar 

  45. B. Orlich, R. Schomacker, Enzyme catalysis in reverse micelles, in History and Trends in Bioprocessing and Biotransformation, Adv. Biochem. Eng. Biotechnol. 75, 185 (2002).

    Google Scholar 

  46. L.C. Park, T. Maruyama, M. Goto, Analyst 128, 161 (2003).

    Article  ADS  Google Scholar 

  47. T. Shangguan, D. Cabral-Lilly, U. Purandare, N. Godin, P. Ahl, A. Janoff, P. Meers, Gene Therapy 7, 769 (2000).

    Article  Google Scholar 

  48. A. Huczko, Appl. Phys. A: Mater. Sci. Processing 70, 365 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohner, A., Bayer, J. & Rädler, J.O. Wormlike lipid/DNA micelles in a non-polar solvent. Eur. Phys. J. E 21, 41–48 (2006). https://doi.org/10.1140/epje/i2006-10043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10043-y

PACS.

Navigation