Skip to main content

PRISM theory of the structure, thermodynamics, and phase transitions of polymer liquids and alloys

  • Chapter
  • First Online:
Atomistic Modeling of Physical Properties

Part of the book series: Advances in Polymer Science ((POLYMER,volume 116))

Abstract

The recent development of a microscopic theory of the equilibrium properties of polymer solutions, melts and alloys based on off-lattice Polymer Reference Interaction Site Model (PRISM) integral equation methods is reviewed. Analytical and numerical predictions for the intermolecular structure and collective density scattering patterns of both coarse-grained and atomistic models of polymer melts are presented and found to be in good agreement with large scale computer simulations and diffraction measurements. The general issues and difficulties involved in the use of the structural information to compute thermodynamic properties are reviewed. Detailed application of a hybrid PRISM approach to calculate the equation-of-state of hydrocarbon fluids is presented and found to reproduce accurately experimental PVT data on polyethylene. The development of a first principles off-lattice theory of polymer crystallization based on a novel generalization of modern thermodynamic density functional methods is discussed. Numerical calculations for polyethylene and polytetrafluoroethylene are in good agreement with the experimental melting temperatures and liquid freezing densities. Generalization of the PRISM approach to treat phase separating polymer blends is also discussed in depth. The general role of compressibility effects in determining small angle scattering patterns, the effective chi-parameter, and spinodal instability curves are presented. New theoretical concepts and closure approximations have been developed in order to describe correctly long wavelength concentration fluctuations in macromolecular alloys. Detailed numerical and analytical applications of the PRISM theory to model athermal and symmetric blends are presented, and the role of nonmean field fluctuation processes are established. Good agreement between the theory and computer simulations of simple symmetric polymer blends has been demonstrated. Strong, nonadditive compressibility effects are found for structurally and/or interaction asymmetric blends which have significant implications for controlling miscibility in polymer alloys. Recent generalizations of PRISM theory to treat block copolymer melts, and nonideal conformational perturbations, are briefly described. The paper concludes with a brief summary of ongoing work and fertile directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  2. Dudowicz J, Freed MS, Freed KF (1991) Macromolecules 24: 5096; Freed KF, Dudowicz J (1992) Theoretica, Chimica Acta 82; Dudowicz J, Freed KF (1993) Macromolecules, 26: 213; Freed K, Dudowicz J (1992) J Chem Phys 97: 2105

    CAS  Google Scholar 

  3. For polymer solutions: Doi M, Edwards SF (1986) Theory of polymer dynamics. Oxford Press, Oxford

    Google Scholar 

  4. For block copolymers: Bates FS, Fredrickson GH (1990) Ann Rev Phys Chem 41: 525

    CAS  Google Scholar 

  5. Roe RJ (ed) (1991) Computer simulations of polymers. Prentice Hall, Englewood Cliffs, N.J.; Colburn EA (ed) (1992) Computer simulations of polymers. Longman, Harlow; Binder K (1993) Advances in Polymer Science, in press

    Google Scholar 

  6. Hansen JP, McDonald IR (1986) Theory of simple liquids, 2nd edn. Academic, London

    Google Scholar 

  7. Chandler D (1982) In: Montroll EW, Lebowitz L (eds) Studies in statistical mechanics, vol. VIII. North-Holland, Amsterdam, p. 274 and references cited therein

    Google Scholar 

  8. Percus JK (1964) In: Frisch HL, Lebowitz KL (eds) Classical fluids. Wiley, New York

    Google Scholar 

  9. Chandler D, Andersen HC (1972) J Chem Phys 57: 1930

    CAS  Google Scholar 

  10. Lowden LJ, Chandler D (1974) J Chem Phys 61: 5228; (1973) 59: 6587; (1975) 62: 4246

    CAS  Google Scholar 

  11. Chandler D, Hsu CS, Streett WB (1977) J Chem Phys 66: 5231; Sandler SI, Narten AH (1976) Mol Phys 32: 1543; Narten AH (1977) J Chem Phys 67: 2102; Hsu CS, Chandler D (1978) Mol Phys 36: 215; Mol Phys 37: 299 (1979)

    CAS  Google Scholar 

  12. Schweizer KS, Curro JG (1987) Phys Rev Lett 58: 246

    CAS  Google Scholar 

  13. Curro JG, Schweizer KS (1987) Macromolecules 20: 1928

    CAS  Google Scholar 

  14. Curro JG, Schweizer KS (1987) J Chem Phys 87: 1842

    CAS  Google Scholar 

  15. Schweizer KS, Curro JG (1988) Macromolecules 21: 3070

    CAS  Google Scholar 

  16. Schweizer KS, Curro JG (1988) Macromolecules 21: 3082

    CAS  Google Scholar 

  17. Volkenstein MV (1963) Configurational statistics of polymer chains. Interscience, New York; Flory PJ (1969) Statistical mechanics of chain molecules. Interscience, New York

    Google Scholar 

  18. Flory PJ (1949) J Chem Phys 17: 203

    Google Scholar 

  19. Curro JG (1976) J Chem Phys 64: 2496; (1979) Macromolecules 12: 463; Vacatello M, Avitabile G, Corradini P, Tuzi A (1980) J Chem Phys 73: 543

    CAS  Google Scholar 

  20. Ballard DG, Schelton J, Wignall GD (1973) Eur. Polymer Journal, 9: 965; Cotton JP, Decker D, Benoit H, Farnoux B, Higgins J, Jannick G, Ober R, Picot C, des Cloizeaux J (1974) Macromolecules 7: 863

    CAS  Google Scholar 

  21. Lue, L, Blanckschtein D (1992) J Phys Chem 96: 8582

    CAS  Google Scholar 

  22. Elliot JR, Kanetar US (1990) Mol Phys 71: 871 and 883

    Google Scholar 

  23. deGennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  24. Schweizer KS, Curro JG (1990) Chemical Physics, 149: 105; Schweizer KS, Curro JG (1991) J Chem Phys 94: 3986

    CAS  Google Scholar 

  25. Honnell KG, Curro JG, Schweizer KS (1990) Macromolecules, 23: 3496

    CAS  Google Scholar 

  26. Koyama R (1973) J Phys Soc Japan, 22: 1029; Mansfield ML (1986) Macromolecules, 19: 854

    Google Scholar 

  27. Chandler D, Silbey RS, Ladanyi BM (1982) Mol Phys 46: 1335; Richardson DM, Chandler D (1984) J Chem Phys 80: 4484

    CAS  Google Scholar 

  28. Curro JG, Schweizer KS, Grest GS, Kremer K (1989) J Chem Phys 91: 1357; Kremer K, Grest GS (1990) J Chem Phys 92: 5057

    CAS  Google Scholar 

  29. Andersen HC, Weeks JD, Chandler D (1971) Phys Rev A 4: 1597; Weeks JD, Chandler D, Andersen HC (1971) J Chem Phys 54: 5237

    Google Scholar 

  30. Yethiraj A, Hall CK (1991) J Chem Phys 93: 4453; (1992) 96: 797

    Google Scholar 

  31. Yethiraj A, Schweizer KS (1992) J Chem Phys 97: 1455

    CAS  Google Scholar 

  32. McCoy JD, Honnell KG, Curro JG, Schweizer KS, Honeycutt JD, Macromolecules (1992) 25: 4905

    Google Scholar 

  33. Honnell KG, McCoy JD, Curro JG, Schweizer KS, Narten AH, Habenschuss A (1991) J Chem Phys 94: 4659

    CAS  Google Scholar 

  34. Narten AH, Habenschuss A, Honnell KG, McCoy JD, Schweizer KS (1992) J Chem Soc Faraday Trans 88: 1791

    CAS  Google Scholar 

  35. Honnell KG, McCoy JD, Curro JG, Schweizer KS, Narten AH, Habenshuss A (1991) Bull Am Phys Soc 36(3): 481, and paper in preparation

    Google Scholar 

  36. Barker JA, Henderson D (1967) Chem Phys 47: 4714; (1972); Ann Rev Phys Chem 23: 439; (1976) Rev. Mod Phys 48: 587

    CAS  Google Scholar 

  37. Dickman R, Hall CK (1988) J Chem Phys 89: 3168

    CAS  Google Scholar 

  38. Yethiraj A, Hall CK (1991) J Chem Phys 95: 3749

    CAS  Google Scholar 

  39. Yethiraj A, Curro JG, Schweizer KS, McCoy JD (1993) J Chem Phys 98: 1635

    CAS  Google Scholar 

  40. Curro JG, Yethiraj A, Schweizer KS, McCoy JD, Honnell KG (1993) Macromolecules 26: 2655

    CAS  Google Scholar 

  41. Dickman R, Hall CK (1986) J Chem Phys 85: 4108; Honnell KG, Hall CK (1989) J Chem Phys 90: 1841

    CAS  Google Scholar 

  42. Olabisi O, Simha R (1975) Macromolecules 8: 206

    CAS  Google Scholar 

  43. Lopez-Rodriguez A, Vega C, Freire JJ, Lago S (1991) Mol Phys 73: 691

    CAS  Google Scholar 

  44. Martynov GA, Vompe AG (1993) Phys Rev E 47: 1012

    Google Scholar 

  45. Flory PJ (1956) Proc Roy Soc A 234: 60

    Google Scholar 

  46. Nagle JF, Gujrati PD, Goldstein M (1984) J Phys Chem 88: 4599

    CAS  Google Scholar 

  47. Ramakrishnan TV, Yussouff M (1979) Phys Rev B 19: 2775

    CAS  Google Scholar 

  48. Haymet ADJ, Oxtoby DW (1981) J Chem Phys 74: 2559; Laird BB, McCoy JD, Haymet ADJ (1987) J Chem Phys 87: 5451

    Google Scholar 

  49. Chandler D, McCoy JD, Singer SJ (1986) J Chem Phys 85: 5977; McCoy JD, Singer SJ, Chandler D (1987) J Chem Phys 87: 4953

    CAS  Google Scholar 

  50. McCoy JD, Rick SW, Haymet ADJ (1989) J Chem Phys 90: 4622; (1990) 92: 3034; Rick SW, McCoy JD, Haymet ADJ (1990) J Chem Phys 92: 3040

    CAS  Google Scholar 

  51. Ding K, Chandler D, Smithline SJ, Haymet ADJ (1987) Phys Rev Lett 59: 1698

    CAS  Google Scholar 

  52. McMullen WE, Freed KF (1990) J Chem Phys 92: 1413

    CAS  Google Scholar 

  53. McCoy JD, Honnell KG, Schweizer KS, Curro JG (1991) Chem Phys Lett 179: 374; J Chem Phys 95: 9348

    CAS  Google Scholar 

  54. Wunderlich B, Czornj G (1977) Macromolecules 10, 906

    CAS  Google Scholar 

  55. Starkweather HW, Zoller P, Jones GA, Vega AJ (1982) J Polym Sci., Polym Phys 20: 751

    CAS  Google Scholar 

  56. See, for example, Bates FS (1991) Science 251: 898; Sanchez IC (1983) Ann Rev Mater Sci 13: 387; Solc K (ed) (1981) Polymer compatibility and incompatibility. Midland, Michigan

    CAS  Google Scholar 

  57. Wignall GD (1987) in Encyclopedia of polymer science and engineering, second edition. Wiley, New York, vol. 12, p. 112

    Google Scholar 

  58. See, for e.g., Jung WG, Fischer EW (1988) Makromol, Chem Makromol Symp 16: 281; Brereton MG, Fischer EW, Herkt-Maetzky C, Mortensen K (1987) J Chem Phys 87: 6114; Han CC, Bauer BJ, Clark JC, Moroga Y, Matsushita Y, Okada M, Tran-cong Q, Chang T, Sanchez IC (1988) Polymer 29: 2002; Bates FS, Muthukumar M, Wignall GD, Fetters LJ (1988) J Chem Phys 89: 535

    CAS  Google Scholar 

  59. Marie P, Selb J, Rameau A, Gallot Y (1988) Makromol Chem Makromol Symp 16: 301; Jung WG, Fischer EW (1988) ibid 16: 281; Hashimoto T, Ijichi Y, Fetters LJ (1988) J Chem Phys 89: 2463; Ijichi Y, Hashimoto T, Fetters LJ (1989) Macromolecules 22: 2817; Tanaka H, Hashimoto T (1991) Macromolecules 24: 5398

    CAS  Google Scholar 

  60. Schweizer KS, Curro JG (1988) Phys Rev Lett 60: 809

    CAS  Google Scholar 

  61. Curro JG, Schweizer KS (1988) J Chem Phys 88: 7242

    CAS  Google Scholar 

  62. Schweizer KS, Curro JG (1989) J Chem Phys 91: 5059

    CAS  Google Scholar 

  63. Curro JG, Schweizer KS (1990) Macromolecules 23: 1402

    CAS  Google Scholar 

  64. Curro JG, Schweizer KS (1991) Macromolecules 24: 6736

    CAS  Google Scholar 

  65. Kirkwood JG, Buff FP (1951) J Chem Phys 19: 774

    CAS  Google Scholar 

  66. Chen XS, Forstmann F (1992) J Chem Phys 97: 3696; Malescio G (1992) J Chem Phys 96: 648, and references cited therein; Arrieta E, Jedrzejek C, Marsh KN (1991) ibid 95: 6806 and 6838

    CAS  Google Scholar 

  67. Sanchez IC (1991) Macromolecules 24: 908

    CAS  Google Scholar 

  68. Schweizer KS (1993) Macromolecules 26: 6033 and 6050

    CAS  Google Scholar 

  69. Schweizer KS, Yethiraj A (1993) J Chem Phys 98: 9053

    CAS  Google Scholar 

  70. Yethiraj A, Schweizer KS (1992) J Chem Phys 97: 5927

    CAS  Google Scholar 

  71. Yethiraj A, Schweizer KS (1993) J Chem Phys 98: 9080

    CAS  Google Scholar 

  72. Singh C, Schweizer KS, Yethiraj A (1994) J Chem Phys, submitted

    Google Scholar 

  73. Honeycutt JD (1992) ACS Polymer Preprints 33(1): 529; (1992) Proc. of CAMSE'92, Yokohama, Japan, in press; private communication

    CAS  Google Scholar 

  74. Singh C, Schweizer KS (1994) J Chem Phys, submitted

    Google Scholar 

  75. Deutsch H-P, Binder K (1992) Europhysics Lett 17: 697; (1993) Macromolecules 25: 6214; (1993) J Phys II France 3: 1049, see also, Sariban A, Binder K (1988) Macromolecules 21: 711

    CAS  Google Scholar 

  76. Gehlsen MP, Rosedale JH, Bates FS, Wignall GD, Hansen L, Almdal K (1992) Phys Rev Lett 68: 2452

    CAS  Google Scholar 

  77. Chandler D (1993) Phys Rev E 48: 2898

    CAS  Google Scholar 

  78. Melenkevitz J, Curro JG (1994) in preparation

    Google Scholar 

  79. Andersen HC, Chandler D (1972) J Chem Phys 57: 1918, 1930

    CAS  Google Scholar 

  80. Lupkowski M, Monson PA (1987) J Chem Phys 87: 3618

    CAS  Google Scholar 

  81. Ladanyi BM, Chandler D (1975) J Chem Phys 62: 4308

    CAS  Google Scholar 

  82. Dudowicz J, Freed KF (1990) Macromolecules 23: 1519; Tang H, Freed KF (1991) Macromolecules 24: 958

    CAS  Google Scholar 

  83. Rowlinson JS, Swinton FL (1982) Liquids and Liquid Mixtures, Butterworth Scientific, London

    Google Scholar 

  84. Hildebrand J, Scott R (1949) The Solubility of Nonelectrolytes, 3rd Edition, Reinhold, New York

    Google Scholar 

  85. Bates FS, Schulz MF, Rosedale JH (1992) Macromolecules 25: 5547

    CAS  Google Scholar 

  86. Liu AJ, Fredrickson GH (1992) Macromolecules 25: 5551

    CAS  Google Scholar 

  87. Yethiraj A, Schweizer KS (1993) Bull Am Phys Soc 38(1), 485; David EF, Schweizer KS (1994) in preparation

    Google Scholar 

  88. David EF, Schweizer KS (1994) J Chem Phys 100: May 15

    Google Scholar 

  89. Leibler L (1980) Macromolecules 13: 1602

    CAS  Google Scholar 

  90. Fried H, Binder K (1991) J Chem Phys 94: 8349

    CAS  Google Scholar 

  91. Fredrickson GH, Helfand E (1987) J Chem Phys 87: 697; Brazovski SA (1975) Sov Phys JETP 41: 85

    CAS  Google Scholar 

  92. Tang H, Freed KF (1992) J Chem Phys 96: 862

    Google Scholar 

  93. Yethiraj A, Kumar S, Hariharan A, Schweizer KS (1994) J Chem Phys 100: 4691

    CAS  Google Scholar 

  94. Yethiraj A, Hall CK, Dickman R (1992) J Colloid and Interface Sci 151: 102

    CAS  Google Scholar 

  95. Schweizer KS, Honnell KG, Curro JG (1992) J Chem Phys 96: 3211

    CAS  Google Scholar 

  96. Chandler D, Singh Y, Richardson DM (1984) J Chem Phys 81: 1975; Nichols AL, Chandler D, Singh Y, Richardson DM (1984) ibid 81, 5109; Laria D, Wu D, Chandler D (1991) ibid, 95: 4444

    CAS  Google Scholar 

  97. Chandler D (1987) Chem Phys Lett 139: 108

    Google Scholar 

  98. Singh Y (1987) J Phys A-Math Gen 20: 3949

    CAS  Google Scholar 

  99. Melenkevitz J, Schweizer KS, Curro JG (1993) Macromolecules 26: 6190

    CAS  Google Scholar 

  100. Grayce CJ, Schweizer KS (1994) J Chem Phys 100: May 1

    Google Scholar 

  101. Melenkevitz J, Curro JG, Schweizer KS (1993) J Chem Phys 99: 5571

    CAS  Google Scholar 

  102. Grayce CJ, Yethiraj A, Schweizer KS (1994) J Chem Phys 100: May 1

    Google Scholar 

  103. Schweizer KS (1986) J Chem Phys 85: 1156, 1176; Synthetic Metals 28: C565 (1989)

    CAS  Google Scholar 

  104. Grayce CJ, Schweizer KS (1993) Bull Am Phys Soc 38(1), 485; Macromolecules to be submitted.

    Google Scholar 

  105. Melenkevitz J, Muthukumar M (1991) Macromolecules 24: 4199

    CAS  Google Scholar 

  106. Schweizer KS (1989) J Chem Phys 91: 5802 and 5822; J Non-Cryst Sol 131–133, 643 (1991); Physica Scripta (1993) T49: 99

    CAS  Google Scholar 

  107. Chiew YC (1990) Mol Phys 70: 129 and 73: 359 (1991); J Chem Phys 93: 5067 (1990).

    CAS  Google Scholar 

  108. Lipson JEG (1991) Macromolecules 24: 1334; Lipson JEG, Andrews AA (1992) J Chem Phys 96: 1426

    CAS  Google Scholar 

  109. Gan HH, Eu BC (1993) J Chem Phys 99: 4084, 4103

    Google Scholar 

  110. Schweizer KS, Curro JG, Ann Rev Phys Chem, in preparation

    Google Scholar 

  111. Curro JG (1994) Macromolecules, in press

    Google Scholar 

  112. Donley JP, Curro JG, McCoy JD (1994) J Chem Phys, in press; Sen S, Cohen JM, McCoy JD, Curro JG (1994) J Chem Phys, submitted

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lucien Monnerie U. W. Suter

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Schweizer, K.S., Curro, J.G. (1994). PRISM theory of the structure, thermodynamics, and phase transitions of polymer liquids and alloys. In: Monnerie, L., Suter, U.W. (eds) Atomistic Modeling of Physical Properties. Advances in Polymer Science, vol 116. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0080203

Download citation

  • DOI: https://doi.org/10.1007/BFb0080203

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57827-7

  • Online ISBN: 978-3-540-48352-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics