Skip to main content
Log in

Numerical study of the stress response of two-dimensional dense granular packings

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate the Green function of two-dimensional dense random packings of grains in order to discriminate between the different theories of stress transmission in granular materials. Our computer simulations allow for a detailed quantitative investigation of the dynamics which is difficult to obtain experimentally. We show that both hyperbolic and parabolic models of stress transmission fail to predict the correct stress distribution in the studied region of the parameters space. We demonstrate that the compressional and shear components of the stress compare very well with the predictions of isotropic elasticity for a wide range of pressures and porosities and for both frictional and frictionless packings. However, the states used in this study do not include the critical isostatic point for frictional particles, so that our results do not preclude the fact that corrections to elasticity may appear at the critical point of jamming, or for other sample preparation protocols, as discussed in the main text. We show that the agreement holds in the bulk of the packings as well as at the boundaries and we validate the linear dependence of the stress profile width with depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mehta, T.C. Halsey, Proceedings of the Workshop ``Challenges in Granular Physics'', Adv. Complex Syst. 4, 287 (2001).

    Article  MathSciNet  Google Scholar 

  2. J. Smid, J. Novosad, Proceedings of the Powtech Conference 1981, Ind. Chem. Eng. Symp. 63, D3V1 (1981).

  3. R. Brockbank, J.M. Huntley, R.C. Ball, J. Phys. II 7, 1521 (1997).

    Article  Google Scholar 

  4. L. Vanel, Phys. Rev. E 60, R5040 (1999).

  5. L. Vanel, Phys. Rev. Lett. 84, 1439 (2000).

    Article  ADS  Google Scholar 

  6. J.-P. Bouchaud, M.E. Cates, P. Claudin, J. Phys. I 5, 639 (1995).

    Article  MathSciNet  Google Scholar 

  7. S.N. Coppersmith, Phys. Rev. E. 53, 4673 (1996).

    Article  ADS  Google Scholar 

  8. L.D. Landau, E.M. Lifshitz, The Theory of Elasticity (Pergamon, Oxford, 1970).

  9. P. Claudin, Phys. Rev. E 57, 4441 (1998).

    Article  ADS  Google Scholar 

  10. P.G. de Gennes, Rev. Mod. Phys. 71, 374 (1999).

    Article  Google Scholar 

  11. G. Reydellet, E. Clement, Phys. Rev. Lett. 86, 3308 (2001).

    Article  ADS  Google Scholar 

  12. J. Geng, Phys. Rev. Lett. 87, 035506 (2001).

    Article  ADS  Google Scholar 

  13. A.P.F. Atman, Eur. Phys. J. E 17, 93 (2005).

    Article  Google Scholar 

  14. M. Da Silva, J. Rajchenbach, Nature 406, 708 (2000).

    Article  ADS  Google Scholar 

  15. J. Geng, Physica D 182, 274 (2003).

    Article  MATH  ADS  Google Scholar 

  16. D.A. Head, Eur. Phys. J. E 6, 99 (2001).

    Article  Google Scholar 

  17. L. Breton, Europhys. Lett. 60, 813 (2002).

    Article  ADS  Google Scholar 

  18. R. da Silveira, cond-mat/0208214 (2002).

  19. C.F. Moukarzel, Granular Matter 6, 61 (2004).

    Article  Google Scholar 

  20. C. Goldenberg, I. Goldhirsch, Phys. Rev. Lett. 89, 084302 (2002).

    Article  ADS  Google Scholar 

  21. J.-N. Roux, Eur. Phys. J. E 7, 297 (2002).

    Article  Google Scholar 

  22. M. Wyart, Phys. Rev. E 72, 051306 (2005).

    Article  ADS  Google Scholar 

  23. N.W. Mueggenburg, Phys. Rev. E 66, 031304 (2002).

    Article  ADS  Google Scholar 

  24. M.J. Spanauth, cond-mat/0308580 (2003).

  25. D. Bonamy, Phys. Rev. E 68, 042301 (2003).

    Article  ADS  Google Scholar 

  26. M. Otto, Phys. Rev. E 67, 031302 (2003).

    Article  ADS  Google Scholar 

  27. A.P.F. Atman, P. Claudin, cond-mat/0310564 (2003).

  28. D. Serero, Eur. Phys. J. E 6, 169 (2001).

    Article  Google Scholar 

  29. L.E. Silbert, Phys. Rev. E 66, 061303 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  30. E. Somfai, Phys. Rev. E 72, 021301 (2005).

    Article  ADS  Google Scholar 

  31. K.L. Johnson, Contact Mechanics (Cambridge University Press, 1985).

  32. H.A. Makse, N. Gland, D.L. Johnson, L.M. Schwartz, Phys. Rev. E 70, 061302 (2004).

    Article  ADS  Google Scholar 

  33. S. Alexander, Phys. Rep. 296, 65 (1998).

    Article  MathSciNet  Google Scholar 

  34. S.F. Edwards, D.V. Grinev, Phys. Rev. Lett. 82, 5397 (1999).

    Article  ADS  Google Scholar 

  35. A. Tkachenko, T.A. Witten, Phys. Rev. E 60, 687 (1999).

    Article  ADS  Google Scholar 

  36. R.C. Ball, R. Blumenfeld, Phys. Rev. Lett. 88, 115505 (2002).

    Article  ADS  Google Scholar 

  37. H.P. Zhang, H.A. Makse, Phys. Rev. E 72, 011301 (2005).

    Article  ADS  Google Scholar 

  38. J.D. Bernal, J. Mason, Nature 188, 910 (1960).

    Google Scholar 

  39. A. Donev, Science 303, 990 (2004).

    Article  ADS  Google Scholar 

  40. E.R. Nowak, Phys. Rev. E 57, 1971 (1998).

    Article  ADS  Google Scholar 

  41. F. Radjai, Phys. Rev. Lett. 77, 274 (1996)

    Article  ADS  Google Scholar 

  42. F. Leonforte, Phys. Rev. B 70, 014203 (2004).

    Article  ADS  Google Scholar 

  43. C.S. O'Hern, Phys. Rev. E 68, 011306 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gland, N., Wang, P. & Makse, H.A. Numerical study of the stress response of two-dimensional dense granular packings. Eur. Phys. J. E 20, 179–184 (2006). https://doi.org/10.1140/epje/i2006-10012-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10012-6

PACS.

Navigation