Skip to main content
Log in

Electric birefringence study of an amyloid fibril system: The short end of the length distribution

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

In this article, a system of amyloid fibrils, based on the protein β-lactoglobulin, is studied by transient electric birefringence. Single pulses of an electric field were applied to the solution, and the initial rise and subsequent decay of birefringence analysed. The decay takes place on a range of relaxation times, and therefore contains information about the length distribution of fibrils in the system. The information can be extracted using theories of the electric polarisability of polyelectrolyte rods, since the fibrils are an example of these. Despite the long-standing complications of such theories, useful quantitative information about the system can still be obtained. Using the Fixman model of polyelectrolyte polarisability, we obtain a measurement of the short end of the length distribution which shows the fibril concentration as a function of length rising linearly from 0.02-2 μm. The short end of the length distribution was unobtainable in our previous study using rheo-optics (S.S. Rogers et al., Macromolecules 38, 2948 (2005)), but reasonable agreement between the two techniques shows they are complementary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Kelly, Curr. Opin. Struct. Biol. 8, 101 (1998).

    Article  PubMed  Google Scholar 

  2. C.M. Dobson, Philos. Trans. R. Soc. London, Ser. B 356, 133 (2001).

    Google Scholar 

  3. J.A. Hardy, G.A. Higgins, Science 256, 184 (1992).

    PubMed  Google Scholar 

  4. M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N. Taffei, G. Ramponi, C.M. Dobson, M. Stefani, Nature 416, (2002), 507.

  5. C.E. MacPhee, C.M. Dobson, J. Am. Chem. Soc. 122, 12707 (2000).

    Article  Google Scholar 

  6. C. Veerman, H. Baptist, L.M.C. Sagis, E. van der Linden, J. Agric. Food Chem. 51, 3880 (2003).

    PubMed  Google Scholar 

  7. S.E. Radford, C.M. Dobson, Cell 97, 291 (1999).

    Article  PubMed  Google Scholar 

  8. M.R.H. Krebs, E.H.C. Bromley, S.S. Rogers, A.M. Donald, Biophys. J. 88, 2013 (2005).

    Article  PubMed  Google Scholar 

  9. C.M. Dobson, Methods 34, 4 (2004).

    Article  PubMed  Google Scholar 

  10. J.C. Rochet, P.T. Lansbury jr., Curr. Opin. Struct. Biol. 10, 60 (2000).

    Article  PubMed  Google Scholar 

  11. N.P. Cheremisinoff, Handbook of Polymer Science and Technology, Vol. 1: Synthesis and Properties (Dekker, 1989).

  12. H. Kramer, M. Deggelmann, C. Graf, M. Hagenbtichle, C. Johner, R. Weber, Macromolecules 25, 4325 (1992).

    Article  Google Scholar 

  13. V.J. Morris, A.R. Foweraker, B.R. Jennings, Adv. Mol. Relax. Interact. Process. 12, 211 (1978).

    Google Scholar 

  14. J.G. Elias, D. Eden, Macromolecules 14, 410 (1981).

    Google Scholar 

  15. J. Newman, H.L. Swinney, Biopolymers 15, 301 (1976).

    Article  PubMed  Google Scholar 

  16. F. Mantegazza, T. Bellini, M. Buscaglia, V. Degiorgio, D.A. Saville, J. Chem. Phys. 113, 6984 (2000).

    Google Scholar 

  17. B.M.I. van der Zande, G.J.M. Koper, H.N.W. Lekkerkerker, J. Phys. Chem. B 103, 5754 (1999).

    Article  Google Scholar 

  18. P.A. Cirkel, G.J.M. Koper, Langmuir 14, 7095 (1998).

    Article  Google Scholar 

  19. S.S. Rogers, P. Venema, L.M.C. Sagis, E. van der Linden, A.M. Donald, Macromolecules 38, 2948 (2005).

    Google Scholar 

  20. W.S. Gosal, A.H. Clark, P.D.A. Pudney, S.B. Ross-Murphy, Langmuir 18, 7174 (2002).

    Article  Google Scholar 

  21. E.H.C. Bromley, M.R.H. Krebs, A.M. Donald, Faraday Discuss. 128 (2005).

  22. L.N. Arnaudov, R. de Vries, H. Ippel, C.P.M. van Mierlo, Biomacromolecules 4, 1614 (2003).

    Article  PubMed  Google Scholar 

  23. L.M.C. Sagis, C. Veerman, E. van der Linden, Langmuir 20, 924 (2004).

    Article  PubMed  Google Scholar 

  24. P. Aymard, T. Nicolai, D. Durrand, Macromolecules 32, 2542 (1999).

    Article  Google Scholar 

  25. R.K. Cannan, A.H. Palmer, A.C. Kibrick, J. Biol. Chem. 142, 803 (1941).

    Google Scholar 

  26. M. Mandel, Mol. Phys. 4, 489 (1961).

    Google Scholar 

  27. F. Oosawa, Biopolymers 9, 677 (1970).

    Article  Google Scholar 

  28. G.S. Manning, Biophys. Chem. 9, 65 (1978).

    Article  PubMed  Google Scholar 

  29. M. Fixman, Macromolecules 13, 711 (1980).

    Article  Google Scholar 

  30. G.S. Manning, J. Chem. Phys. 90, 5704 (1989).

    Article  Google Scholar 

  31. M. Mandel, T. Odijk, Annu. Rev. Phys. Chem. 35, 75 (1984).

    Article  Google Scholar 

  32. U. Mohanty, Y. Zhao, Biopolymers 38, 377 (1996).

    Article  PubMed  Google Scholar 

  33. E. Fredericq, C. Houssier, Electric Dichroism and Electric Birefringence (Oxford University Press, 1973).

  34. M. Tricot, C. Houssier, Macromolecules 15, 854 (1982).

    Article  Google Scholar 

  35. H. Beno\^ıt, C. R. Acad. Sci. Paris 228, 1716 (1949).

    Google Scholar 

  36. H. Beno\^ıt, Ann. Phys. (Paris) 6, 561 (1951).

    Google Scholar 

  37. C.T. O'Konski, B.H. Zimm, Science 111, 113 (1950).

    PubMed  Google Scholar 

  38. M. Doi, S.F. Edwards, Polymer Dynamics (Oxford University Press, 1986).

  39. R. Pecora, M.A. Tracy, Annu. Rev. Phys. Chem. 43, 525 (1992).

    Article  Google Scholar 

  40. J. Riseman, J.G. Kirkwood, J. Chem. Phys. 18, 512 (1950).

    Google Scholar 

  41. J.G. Kirkwood, P.L. Auer, J. Chem. Phys. 19, 281 (1951).

    Article  Google Scholar 

  42. S. Broersma, J. Chem. Phys 32, 1626 (1960).

    Article  Google Scholar 

  43. M.M. Tirado, G. de la Torre, J. Chem. Phys. 73, 1986 (1980).

    Article  Google Scholar 

  44. M.A. Tracy, R. Pecora, Macromolecules 25, 337 (1992).

    Google Scholar 

  45. K.M. Zero, R. Pecora, Macromolecules 15, 87 (1982).

    Google Scholar 

  46. C. Holm, M. Rehahn, W. Oppermann, M. Ballauff, Adv. Polym. Sci. 166, 1 (2004).

    Google Scholar 

  47. D.J. Winzor, Anal. Biochem. 325, 1 (2004).

    Article  PubMed  Google Scholar 

  48. C.E. Felder, S.A. Botti, L. Lifson, I. Silman, J.L. Sussman, J. Mol. Graph. Model. 15, 318 (1997).

    Article  PubMed  Google Scholar 

  49. J.D. Ferry, J.L. Oncley, J. Am. Chem. Soc. 63, 272 (1941).

    Google Scholar 

  50. S. Brownlow, J.H.M. Cabral, R. Cooper, D.R. Flower, S.J. Yewdall, I. Polikarpov, A.C.T. North, L. Sawyer, Structure 5, 481 (1997).

    Article  PubMed  Google Scholar 

  51. D. Hamada, C.M. Dobson, Protein Sci. 11, 2417 (2002).

    Article  PubMed  Google Scholar 

  52. D.M. Walsh, D.M. Hartley, Y. Kusumoto, Y. Fezoui, M.M. Condron, A. Lomakin, G.B. Benedek, D.J. Selkoe, D.B. Teplow, J. Biol. Chem. 274, 25945 (1999).

    Article  PubMed  Google Scholar 

  53. H.A. Lashuel, D.M. Hartley, B.M. Petre, J.S. Wall, M.N. Simon, T. Walz, P.T. Lansbury, J. Mol. Biol. 332, 795 (2003).

    Article  PubMed  Google Scholar 

  54. W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University Press, 1993).

  55. S.W. Provencher, Comput. Phys. Commun. 27, 229 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, S.S., Venema, P., van der Ploeg, J.P.M. et al. Electric birefringence study of an amyloid fibril system: The short end of the length distribution. Eur. Phys. J. E 18, 207–217 (2005). https://doi.org/10.1140/epje/i2005-10038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10038-2

PACS.

Navigation