Skip to main content
Log in

Segmental order in end-linked polymer networks: A Monte Carlo study

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Segmental order in end-linked monomodal and bimodal polymer networks is investigated by means of bond-fluctuation Monte Carlo simulations. The tensor order parameter, which is a central observable in NMR experiments, is not uniquely related to simple vectorial order. The relaxation of NMR-detected tensorial interactions towards their finite long-time limit is best described by a power law and occurs over much longer time scales than the relaxation of vectorial order. The well-known prediction for the segmental order of Gaussian chains as a simple function of the segment number between constraints is not straightforwardly obeyed, neither in dry nor in swollen networks. Excluded-volume interactions tend to significantly reduce the tensorial order, as is clearly observed in single-chain simulations. A distribution extends along the chain, where order is increased in a region of 30-40 bonds around the cross-links in networks. The dominating contribution to the order parameter distribution arises from the frozen-in distribution of end-to-end separations. We find strong deviations from the Gamma distribution, which has so far been implicitly used in most NMR works, as it is a straightforward consequence of a Gaussian distribution of end separations. Specifically, we find narrower distributions, as small values of the tensor order parameter are strongly suppressed, most probably as a result of trapped entanglements. The markedly subaffine behavior of the average order parameter and the changes in its distribution on swelling are assigned to orientation processes of strands which compensate for the non-affine local deformation. Our central observations and interpretations are well supported by our previous experimental and theoretical work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.R.G. Treloar, The Physics of Rubber Elasticity, 2nd edition (Oxford University Press, Oxford, 1967).

  2. M. Gottlieb, R.J. Gaylord, Macromolecules 17, 2024 (1984).

    Article  Google Scholar 

  3. J. Bastide, L. Leibler, J. Prost, Macromolecules 23, 1821 (1990).

    Article  Google Scholar 

  4. J. Bastide, S. Candau, The Physical Properties of Polymeric Gels, Chapt. 5: Structure of Gels as Investigated by Means of Static Scattering Techniques (John Wiley, 1996) pp. 143-210.

  5. R. Chasset, P. Thirion, Proceedings of the Conference on Physics of Non-Cristalline Solids (North-Holland Publ. & Co., 1965).

  6. D.J. Plazek, J. Polym. Sci. A-2 4, 745 (1966).

    Article  Google Scholar 

  7. L.H. Sperling, A. Tobolsky, J. Polym. Sci. A-2 6, 259 (1968).

    Article  Google Scholar 

  8. A. Havranek, Rheol. Acta (Suppl.) 26, 202 (1988).

    Google Scholar 

  9. J.-U. Sommer, Beiträge zur Langzeitdynamik von Polymeren Netzwerken, PhD Thesis (TH Merseburg, Merseburg, Germany, 1991).

  10. F.T. Wall, J. Chem. Phys. 11, 527 (1943).

    Article  Google Scholar 

  11. P.J. Flory, Proc. R. Soc. London, Ser. A 351, 351 (1976).

    Google Scholar 

  12. R.J. Gaylord, J.F. Douglas, Polym. Bull. 18, 347 (1987).

    Article  Google Scholar 

  13. D.J. Read, T.C.B. McLeish, Macromolecules 30, 6376 (1997).

    Article  Google Scholar 

  14. C. Svaneborg, G. Grest, R. Everaers, Phys. Rev. Lett. 93, 257801 (2004).

    PubMed  Google Scholar 

  15. R.T. Deam, S.F. Edwards, Philos. Trans. R. Soc. London A 280, 317 (1976).

    Google Scholar 

  16. M. Warner, S. Edwards, J. Phys. A 11, 1649 (1978).

    Google Scholar 

  17. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press, London, 1994).

  18. J.P. Cohen-Addad, J. Chem. Phys. 60, 2440 (1973).

    Google Scholar 

  19. J.P. Cohen-Addad, Prog. NMR Spectrosc. 25, 1 (1993).

    Google Scholar 

  20. P. de Gennes, J. Prost, The Physics of Liquid Crystals, Int. Ser. Monogr. Phys., Vol. 83 (Oxford University Press, Oxford, 1995).

  21. W. Kuhn, F. Grün, Kolloid Z. 101, 248 (1942).

    Article  Google Scholar 

  22. D.J.R. Taylor, R.F.T. Stepto, R.A. Jones, I.M. Ward, Macromolecules 32, 1978 (1999).

    Google Scholar 

  23. M.E. Ries, M.G. Brereton, I.M. Ward, J.I. Cail, R.F.T. Stepto, Macromolecules 35, 5665 (2002).

    Article  Google Scholar 

  24. K. Saalwächter, F. Kleinschmidt, J.-U. Sommer, Macromolecules 37, 8556 (2004).

    Article  Google Scholar 

  25. G.E. Pake, J. Chem. Phys. 16, 327 (1948).

    Article  Google Scholar 

  26. R. Kitamaru, Nuclear Magnetic Resonance: Principles and Theory, Stud. Phys. Theor. Chem., Vol. 72 (Elsevier, Amsterdam, 1990).

  27. P.W. Andersen, P.R. Weiss, Rev. Mod. Phys. 25, 269 (1953).

    Article  Google Scholar 

  28. K. Binder, A. Young, Rev. Mod. Phys. 58, 801 (1986).

    Article  Google Scholar 

  29. K. Saalwächter, J. Chem. Phys. 120, 454 (2004).

    PubMed  Google Scholar 

  30. E. Fischer, F. Grinberg, R. Kimmich, S. Hafner, J. Chem. Phys. 109, 846 (1998).

    Article  Google Scholar 

  31. R. Fechete, D.E. Demco, B. Blümich, J. Chem. Phys. 118, 2411 (2003).

    Article  Google Scholar 

  32. J.-U. Sommer, G. Heinrich, E. Straube, Colloid Polym. Sci. 268, 148 (1990).

    Google Scholar 

  33. J. Cohen-Addad, M. Domard, J. Herz, J. Chem. Phys. 76, 2744 (1982).

    Google Scholar 

  34. I. Carmesin, K. Kremer, Macromolecules 21, 2819 (1988).

    Article  Google Scholar 

  35. H. Trautenberg, T. Hölzl, D. Göritz, Comp. Theor. Polym. Sci. 6, 135 (1996).

    Google Scholar 

  36. W. Paul, K. Binder, K. Kremer, D.W. Heermann, Macromolecules 24, 6332 (1991).

    Article  Google Scholar 

  37. J.-U. Sommer, S. Lay, Macromolecules 35, 9832 (2002).

    Article  Google Scholar 

  38. W. Paul, K. Binder, D. Heermann, K. Kremer, J. Phys. II 1, 37 (1991).

    Google Scholar 

  39. M. Tanaka, K. Iwata, N. Kuzuu, Comp. Theor. Polym. Sci. 10, 299 (2000).

    Article  Google Scholar 

  40. P.J. Flory, J. Rehner, J. Chem. Phys. 11, 521 (1943).

    Article  Google Scholar 

  41. J.-U. Sommer, J. Chem. Phys. 95, 1316 (1991).

    Article  Google Scholar 

  42. S. Lay, J.-U. Sommer, A. Blumen, J. Chem. Phys. 110, 12173 (1999).

    Article  Google Scholar 

  43. F.T. Wall, P.J. Flory, J. Chem. Phys. 19, 1435 (1951).

    Article  Google Scholar 

  44. K. Saalwächter, P. Ziegler, O. Spyckerelle, B. Haidar, A. Vidal, J.-U. Sommer, J. Chem. Phys. 119, 3468 (2003).

    Google Scholar 

  45. J.P. Cohen-Addad, M. Domard, J. Herz, J. Chem. Phys. 76, 2744 (1982).

    Article  Google Scholar 

  46. J.P. Cohen-Addad, M. Domard, G. Lorentz, J. Herz, J. Phys. (Paris) 45, 575 (1984).

    Google Scholar 

  47. J.P. Cohen-Addad, Macromolecules 22, 147 (1989).

    Article  Google Scholar 

  48. P. Sotta, C. Fülber, D.E. Demco, B. Blümich, H.W. Spiess, Macromolecules 29, 6222 (1996).

    Article  Google Scholar 

  49. M. Knörgen, H. Menge, G. Hempel, H. Schneider, M. Ries, Polymer 43, 4091 (2002).

    Article  Google Scholar 

  50. M.G. Brereton, Macromolecules 22, 3667 (1989).

    Article  Google Scholar 

  51. J.-U. Sommer, J. Chem. Phys. 97, 5777 (1992).

    Article  Google Scholar 

  52. R. Everaers, S. Sukumaran, G. Grest, C. Svaneborg, A. Sivasubramanian, K. Kremer, Science 303, 823 (2004).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -U. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, J.U., Saalwächter, K. Segmental order in end-linked polymer networks: A Monte Carlo study. Eur. Phys. J. E 18, 167–182 (2005). https://doi.org/10.1140/epje/i2005-10037-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10037-3

PACS.

Navigation