Skip to main content
Log in

Rubber elasticity: a scaling approach

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

A scaling analysis of the rubber-like elastic behavior of a cross-linked polymer network is presented which incorporates the two most salient contributions to the free energy of deformation: the chain connectivity of the segments and the restrictions on the chain configurations due to entanglements. The affine deformation of the junction points is assumed and a tube model is used to discuss the deformation dependence of the entanglement constraint parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edwards, S. F., Proc. Phys. Soc., 92, 9 (1967). It should be noted that eq. 3.4 should obviously be d ∼ α, so that eq. 3.6 should be α ∼ ϱ−1.

    Google Scholar 

  2. de Gennes, P.-G., J. de Phys.-Lettres, 35, L-133 (1974). This paper complains that the Edwards harmonic potential model in ref. 1 gives E ∼ ϱ3/2 This criticism is invalid. It appears to result from using the miswritten eq. 3.4, d ∼ α, in the expressions ɛ0 ∼ α−1, F ∼ Nɛ0, d ∼ ϱ−1/2, E ∼ ϱɛ0. Using the correct d2 ∼ α relation brings the Edwards and deGennes models into agreement in obtaining E ∼ ϱ2.

    Google Scholar 

  3. Heinrich, G., Straube, E. and Helmis, G., Z. Phys. Chemie, Leipzig, 258, 361 (1977); 260, 737 (1979).

    Google Scholar 

  4. Kunne, U., Ph.D., Thesis, Technischen Universität, Hannover, Germany (1972).

    Google Scholar 

  5. DiMarzio, E. A., Am. Chem. Soc. Polymer Prepr., 9(1), 256 (1968).

    Google Scholar 

  6. Thomas, F., Straube, E. and Helmis, G., Plaste und Kautschuk, 22, 411 (1975).

    Google Scholar 

  7. Gaylord, R. J., Polymer Eng. and Sci., 19, 263 (1979).

    Google Scholar 

  8. Gaylord, R. J., Polymer Bull., 8, 325 (1982); 9, 181 (1983).

    Google Scholar 

  9. Kovac, J. and Crabb, C. C., Macromolecules, 19, 1744 (1986).

    Google Scholar 

  10. Marrucci, G., Macromolecules, 14, 434 (1981). This paper uses the same constant tube volume deformation assumption as ref. 8 but otherwise differs considerably, e.g., in its use of a single straight tube (which results in a non-separable free energy expression) and its prediction that the equilibrium modulus is independent of the number of network chains (which follows from using the primitive path as the center line of that tube).

    Google Scholar 

  11. Tschoegl, N. W. and Gurer, C., Macromolecules, 18, 680 (1985).

    Google Scholar 

  12. Doi, M., J. Phys. A, 8, 959 (1975).

    Google Scholar 

  13. Gottlieb, M. and Gaylord, R. J., Polymer, 24, 1644 (1983).

    Google Scholar 

  14. Gottlieb, M. and Gaylord, R. J., Macromolecules, 20, 130 (1987).

    Google Scholar 

  15. Gaylord, R. J., DiMarzio, E. A., Lee, A. and Weiss, G. H., Polymer Comm., 26, 337 (1985).

    Google Scholar 

  16. Gaylord, R. J., Weiss, G. H. and DiMarzio, E. A., Macromolecules, 19, 927 (1986).

    Google Scholar 

  17. Heinrich, G., Straube, E. and Helmis, G., Adv. Polym. Sci., in press.

  18. Edwards, S. F. and Vilgis, T. A., Rep. Prog. Phys., to appear.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaylord, R.J., Douglas, J.F. Rubber elasticity: a scaling approach. Polymer Bulletin 18, 347–354 (1987). https://doi.org/10.1007/BF00256236

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00256236

Keywords

Navigation