Skip to main content
Log in

Transport and recombination in organic light-emitting diodes studied by electrically detected magnetic resonance

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have used electrically detected magnetic resonance (EDMR) to study a series of multilayer organic devices based on aluminum (III) 8-hydroxyquinoline (Alq3). These devices were designed to identify the microscopic origin of different spin-dependent processes, i.e. hopping and exciton formation. The EDMR signal in organic light-emitting diodes (OLEDs) based on Alq3 is only observed when the device is electroluminescent and is assigned to spin-dependent exciton formation. It can be decomposed in at least two Gaussians: one with peak-to-peak line ( ΔHPP) of 1.6 mT and another with ΔHPP of 2.0 to 3.4 mT, depending on bias and temperature. The g-factors of the two components are barely distinguishable and close to 2.003. The broad line is attributed to the resonance in Alq3 anions, while the other line is attributed to cationic states. These attributions are supported by line shape and its electrical-field dependence of unipolar Alq3-based diodes, where hopping process related to dication and dianion formation is observed. In these unipolar devices, it is shown that the signal coming from spin-dependent hopping occurs close to organic semiconductor/metal interfaces. The sign of the magnetic-resonance-induced conductivity change is dominated by charge injection rather than charge mobility. Our results indicate that the probability of singlet exciton formation in our OLEDs is smaller than 25%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.W. Tang, S.A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  Google Scholar 

  2. L.S. Hung, C.H. Chen, Mater. Sci. Eng. R 39, 143 (2002).

    Article  Google Scholar 

  3. V.V.N.R. Kishore, N. Periasamy, B. Bhattacharjee, R. Das, P.L. Paulose, K.L. Narasimhan, Chem. Phys. Lett. 367, 657 (2003)

    Article  Google Scholar 

  4. C.F.O. Graeff, in Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa, Vol. 2 (American Scientific Publishers, Stevenson Ranch, Cal., 2004) pp. 1-745.

  5. F.A. Castro, G.B. Silva, L.F. Santos, R.M. Faria, F. Nuesch, L. Zuppiroli, C.F.O. Graeff, J. Non-Cryst. Solids 338-40, 622 (2004).

  6. G. Li, C.H. Kim, P.A. Lane, J. Shinar, Phys. Rev. B 69, 165311 (2004).

    Article  Google Scholar 

  7. E. Tutis, D. Berner, L. Zuppiroli, J. Appl. Phys. 93, 4594 (2003).

    Article  Google Scholar 

  8. A. Salleo, R.A. Street, Phys. Rev. B 70, 235324 (2004).

    Article  Google Scholar 

  9. N. Kirova, S. Brazovskii, Synth. Met. 76, 229 (1996)

    Article  Google Scholar 

  10. M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z.V. Vardeny, Nature 409, 494 (2001)

    Article  PubMed  Google Scholar 

  11. M. Stossel, J. Staudigel, F. Steuber, J. Blassing, J. Simmerer, A. Winnacker, Appl. Phys. Lett. 76, 115 (2000).

    Article  Google Scholar 

  12. H. Dersch, L. Schweitzer, J. Stuke, Phys. Rev. B 28, 4678 (1983).

    Article  Google Scholar 

  13. L.S. Swanson, J. Shinar, A.R. Brown, D.D.C. Bradley, R.H. Friend, P.L. Burn, A. Kraft, A.B. Holmes, Phys. Rev. B 46, 15072 (1992)

    Article  Google Scholar 

  14. M. Segal, M.A. Baldo, R.J. Holmes, S.R. Forrest, Z.G. Soos, Phys. Rev. B 68, 075211 (2003)

    Article  Google Scholar 

  15. J.S. Wilson, A.S. Dhoot, A.J.A.B. Seeley, M.S. Khan, A. Kohler, R.H. Friend, Nature 413, 828 (2001).

    Article  PubMed  Google Scholar 

  16. S.W. Yin, L.P. Chen, P.F. Xuan, K.Q. Chen, Z. Shuai, J. Phys. Chem. B 108, 9608 (2004).

    Article  Google Scholar 

  17. S. Kuroda, K. Marumoto, Y. Shimoi, S. Abe, Thin Solid Films 393, 304 (2001).

    Article  Google Scholar 

  18. A. Curioni, W. Andreoni, Ibm J. Res. Dev. 45, 101 (2001).

    Google Scholar 

  19. I.G. Hill, A. Kahn, J. Cornil, D.A. dos Santos, J.L. Bredas, Chem. Phys. Lett. 317, 444 (2000)

    Article  Google Scholar 

  20. Z. Ding, A.F. Gulla, D.E. Budil, J. Chem. Phys. 115, 10685 (2001).

    Article  Google Scholar 

  21. M. Plato, H.J. Steinhoff, C. Wegener, J.T. Torring, A. Savitsky, K. Mobius, Mol. Phys. 100, 3711 (2002).

    Article  Google Scholar 

  22. W.B. Mims, The Linear Electric Field Effect in Paramagnetic Resonance (Clarendon Press, Oxford, 1976).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. O. Graeff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graeff, C.F.O., Silva, G.B., Nüesch, F. et al. Transport and recombination in organic light-emitting diodes studied by electrically detected magnetic resonance. Eur. Phys. J. E 18, 21–28 (2005). https://doi.org/10.1140/epje/i2005-10026-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10026-6

PACS.

Navigation