Skip to main content
Log in

Crack motion in viscoelastic solids: The role of the flash temperature

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a simple theory of crack propagation in viscoelastic solids. We calculate the energy per unit area, G(v), to propagate a crack, as a function of the crack tip velocity v. Our study includes the non-uniform temperature distribution (flash temperature) in the vicinity of the crack tip, which has a profound influence on G(v). At very low crack tip velocities, the heat produced at the crack tip can diffuse away, resulting in very small temperature increase: in this “low-speed” regime the flash temperature effect is unimportant. However, because of the low heat conductivity of rubber-like materials, already at moderate crack tip velocities a very large temperature increase (of order of 1000 K) can occur close to the crack tip. We show that this will drastically affect the viscoelastic energy dissipation close to the crack tip, resulting in a “hot-crack” propagation regime. The transition between the low-speed regime and the hot-crack regime is very abrupt, which may result in unstable crack motion, e.g. stick-slip motion or catastrophic failure, as observed in some experiments. In addition, the high crack tip temperature may result in significant thermal decomposition within the heated region, resulting in a liquid-like region in the vicinity of the crack tip. This may explain the change in surface morphology (from rough to smooth surfaces) which is observed as the crack tip velocity is increased above the instability threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Heinrich, J. Stuve, G. Gerber, Polymer 43, 395 (2002).

    Article  Google Scholar 

  2. C. Creton, H. Lakrout, J. Polym. Sci. B, Polym. Phys. 38, 965 (2000).

    Article  Google Scholar 

  3. G. Carbone, L. Mangialardi, J. Mech. Phys. Solids 52, 1267 (2004).

    Article  Google Scholar 

  4. A.N. Gent, J. Schultz, J. Adhes. 3, 281 (1972).

    Google Scholar 

  5. D. Maugis, M. Barquins, J. Phys. D 11, 1989 (1978).

    Article  Google Scholar 

  6. A.N. Gent, Langmuir 12, 4492 (1996).

    Article  Google Scholar 

  7. M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  Google Scholar 

  8. B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001).

    Article  Google Scholar 

  9. P.G. de Gennes, Langmuir 12, 4497 (1996).

    Article  Google Scholar 

  10. R.A. Schapery, Int. J. Fract. 11, 141

  11. J.A. Greenwood, K.L. Johnson, Philos. Mag. A 43, 697 (1981).

    Google Scholar 

  12. M. Barber, J. Donley, J.S. Langer, Phys. Rev. A 40, 366 (1989).

    Article  PubMed  Google Scholar 

  13. J.M. Baney, C.Y. Hui, J. Appl. Phys. 86, 4232 (1999)

    Article  Google Scholar 

  14. B.N.J. Persson, E.A. Brener, Phys. Rev. E 71, 036123 (2005).

    Article  Google Scholar 

  15. G.I. Barenblatt, Adv. Appl. Mech. 7, 55 (1962).

    Google Scholar 

  16. E.E. Gdoutos, P.M. Schubel, I.M. Daniel, Strain 40, 119 (2004).

    Article  Google Scholar 

  17. J.T. South, S.W. Case, K.L. Reifsnider, Mech. Mater. 34, 451 (2002).

    Article  Google Scholar 

  18. K. Tsunoda, J.J.C. Busfield, C.K.L. Davies, A.G. Thomas, J. Mater. Sci. 35, 5187 (2000).

    Article  Google Scholar 

  19. B.N.J. Persson, in preparation.

  20. A.A. Griffith, Philos. Trans. R. Soc. London, A 221, 163 (1920).

    Google Scholar 

  21. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 1995).

  22. R.M. Christensen, Int. J. Fract. 15, 3 (1979).

    Article  Google Scholar 

  23. R.M. Christensen Theory of Viscoelasticity, 2nd edition (Dover Publications, Inc., Mineola, New York, 2003).

  24. A.G. Thomas, J. Polym. Sci. 18, 177 (1955).

    Article  Google Scholar 

  25. A similar approach has already been applied successfully to rubber friction on rough substrates, where the flash temperature has a profound influence on the friction dynamics (B.N.J. Persson, unpublished).

  26. K.L. Johnson, in V.V. Tsukruk, K.J. Wahl (Editors), Microstructure and Microtribology of Polymer Surfaces (American Chemical Society, Washington, DC, 2000) pp. 24-41.

  27. K.N.G. Fuller, P.G. Fox, J.E. Field, Proc. R. Soc. London, Ser. A 341, 537 (1975).

    Google Scholar 

  28. P.G. Fox, Soria-Ruiz, Proc. R. Soc. London, Ser. A 317, 79 (1970).

    Google Scholar 

  29. R.D. Deegan, P.J. Petersan, M. Marder, H.L. Swinney, Phys. Rev. Lett. 88, 014304 (2002)

    Article  PubMed  Google Scholar 

  30. L.B. Freund, Dynamical Fracture Mechanics (Cambridge University Press, Cambridge, 1990).

  31. M. Marder, Phys. Rev. Lett. 94, 048001 (2005).

    Article  PubMed  Google Scholar 

  32. B.N.J. Persson, Phys. Rev. Lett. 81, 3439 (1998)

    Article  Google Scholar 

  33. D.S. Dugdale, J. Mech. Phys. Solids 8, 100 (1960).

    Article  Google Scholar 

  34. A.D. Roberts, A.G. Thomson, Wear 33, 45 (1975).

    Article  Google Scholar 

  35. F. Lacroix, A. Tougui, N.R. Neelakantan, N. Ranganathan, A new approach for crack growth life of an elastomeric material, in The 15th European Conference of Fracture-Advanced Fracture Mechanics for Life and Safety Assessments, Stockholm, Sweden, August 11-13, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Carbone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carbone, G., Persson, B.N.J. Crack motion in viscoelastic solids: The role of the flash temperature. Eur. Phys. J. E 17, 261–281 (2005). https://doi.org/10.1140/epje/i2005-10013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10013-y

PACS.

Navigation