Skip to main content
Log in

From the stress response function (back) to the sand pile “dip”

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We relate the pressure “dip” observed at the bottom of a sand pile prepared by successive avalanches to the stress profile obtained on sheared granular layers in response to a localized vertical overload. We show that, within a simple anisotropic elastic analysis, the skewness and the tilt of the response profile caused by shearing provide a qualitative agreement with the sand pile dip effect. We conclude that the texture anisotropy produced by the avalanches is in essence similar to that induced by a simple shearing --albeit tilted by the angle of repose of the pile. This work also shows that this response function technique could be very well adapted to probe the texture of static granular packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a broad perspective on granular materials, see the focus issue on the physics of granular media of C. R. Acad. Sci. Phys. 3, 129-245 (2002)

    Google Scholar 

  2. J. Šmíd, J. Novosad, Proceedings of the Powtech. Conference 1981, Ind. Chem. Eng. Symp. 63, D3V 1 (1981).

  3. R. Brockbank, J.M. Huntley, R.C. Ball, J. Phys. II 7, 1521 (1997).

    CAS  Google Scholar 

  4. L. Vanel, D.W. Howell, D. Clark, R.P. Behringer, E. Clément, Phys. Rev. E 60, R5040 (1999).

  5. J. Geng, E. Longhi, R.P. Behringer, D.W. Howell, Phys. Rev. E 64, 060301(R) (2001).

    CAS  Google Scholar 

  6. K. Liffman, D.Y.C. Chan, B.D. Hughes, Powder Technol. 72, 255 (1992).

    CAS  Google Scholar 

  7. S. Luding, Phys. Rev. E 55, 4720 (1997).

    CAS  Google Scholar 

  8. H.-G. Matuttis, Granular Matter 1, 83 (1998).

    Google Scholar 

  9. J.-P. Bouchaud, M.E. Cates, P. Claudin, J. Phys. I 5, 639 (1995).

    Google Scholar 

  10. J.P. Wittmer, P. Claudin, M.E. Cates, J.-P. Bouchaud, Nature, 382, 336 (1996).

    Google Scholar 

  11. J.P. Wittmer, M.E. Cates, P. Claudin, J. Phys. I 7, 39 (1997).

    Google Scholar 

  12. P. Claudin, La physique des tas de sable, PhD Thesis, Ann. Phys. (Paris) 24, no. 2, 1 (1999).

    Google Scholar 

  13. L. Vanel, P. Claudin, J.-P. Bouchaud, M.E. Cates, E. Clément, J.P. Wittmer, Phys. Rev. Lett. 84, 1439 (2000).

    CAS  PubMed  Google Scholar 

  14. M.E. Cates, J.P. Wittmer, J.-P. Bouchaud, P. Claudin, Phys. Rev. Lett. 81, 1841 (1998)

    CAS  Google Scholar 

  15. J.-P. Bouchaud, P. Claudin, D. Levine, M. Otto, Eur. Phys. J. E 4, 451 (2001)

    CAS  Google Scholar 

  16. R. Blumenfeld, Phys. Rev. Lett. 93, 108301 (2004).

    PubMed  Google Scholar 

  17. D.M. Wood, Soil Behaviour and Critical State Soil Mechanics (Cambridge University Press, Cambridge, 1990).

  18. H. Makse, N. Gland, D.L. Johnson, L.M. Schwartz, Phys. Rev. Lett. 83, 50705073 (1999).

    Google Scholar 

  19. P.-G. de Gennes, Physica A 261, 267 (1998)

    Google Scholar 

  20. M. da Silva, J. Rajchenbach, Nature 406, 708 (2000).

    PubMed  Google Scholar 

  21. G. Reydellet, E. Clément, Phys. Rev. Lett. 86, 3308 (2001)

    CAS  PubMed  Google Scholar 

  22. D. Serero, G. Reydellet, P. Claudin, E. Clément, D. Levine, Eur. Phys. J. E 6, 169 (2001).

    CAS  Google Scholar 

  23. J. Geng, D. Howell, E. Longhi, R.P. Behringer, G. Reydellet, L. Vanel, E. Clément, S. Luding, Phys. Rev. Lett. 87, 035506 (2001).

    CAS  PubMed  Google Scholar 

  24. N.W. Mueggenburg, H.M. Jaeger, S.R. Nagel, Phys. Rev. E 66, 031304 (2002).

    Google Scholar 

  25. J. Geng, G. Reydellet, E. Clément, R.P. Behringer, Physica D 182, 274 (2003).

    Google Scholar 

  26. M.J. Spannuth, N.W. Mueggenburg, H.M. Jaeger, S.R. Nagel, cond-mat/0308580.

  27. C. Eloy, E. Clément, J. Phys. I 7, 1541 (1997).

    Google Scholar 

  28. J.-J. Moreau, in the proceedings of the Colloque Physique et Mécanique des Matériaux Granulaires, Champs-sur-Marne (France) (Laboratoire des Ponts et Chaussées, 2000) p. 199.

  29. L. Breton, P. Claudin, E. Clément, J.-D. Zucker, Europhys. Lett. 60, 813 (2002).

    CAS  Google Scholar 

  30. C. Goldenberg, I. Goldhirsch, Phys. Rev. Lett. 89, 084302 (2002).

    CAS  PubMed  Google Scholar 

  31. C. Goldenberg, I. Goldhirsch, Granular Matter 6, 87 (2004).

    Google Scholar 

  32. R. da Silveira, G. Vidalenc, C. Gay, cond-mat/0208214.

  33. S. Ostojic, D. Panja, J. Stat. Mech., P01011 (2005)

  34. A.P.F. Atman, P. Brunet, J. Geng, G. Reydellet, G. Combe, P. Claudin, R.P. Behringer, E. Clément, to be published in J. Phys. Condens. Matter, special issue on Granular Materials, edited by M. Nicodemi, cond-mat/0411734.

  35. N. Gland, P. Wang, H.A. Makse, Numerical study of the stress response of dense granular packings, preprint (2004).

  36. C. Goldenberg, I. Goldhirsch, to be published in Nature (2005).

  37. C. Goldenberg, I. Goldhirsch, Eur. Phys. J. E 9, 245 (2002).

    PubMed  Google Scholar 

  38. M. Otto, J.-P. Bouchaud, P. Claudin, J.E.S. Socolar, Phys. Rev. E 67, 031302 (2003).

    CAS  Google Scholar 

  39. D.A. Head, A.V. Tkachenko, T.A. Witten, Eur. Phys. J. E 6, 99 (2001)

    CAS  Google Scholar 

  40. A. Kasahara, H. Nakanishi, cond-mat/0405169.

  41. S.F. Edwards, D.V. Grinev, Phys. Rev. Lett. 82, 5397 (1999).

    CAS  Google Scholar 

  42. A.V. Tkachenko, T.A. Witten, Phys. Rev. E 60, 687 (1999).

    CAS  Google Scholar 

  43. R.C. Ball, R. Blumenfeld, Phys. Rev. Lett. 88, 115505 (2002).

    PubMed  Google Scholar 

  44. C.F. Moukarzel, J. Phys. Condens. Matter 14, 2379 (2002).

    CAS  Google Scholar 

  45. J.-N. Roux, Phys. Rev. E 61, 6802 (2000).

    CAS  Google Scholar 

  46. S.B. Savage, in Physics of Dry Granular Media, edited by H.J. Herrmann, J.P. Hovi, S. Luding, NATO ASI Ser., Vol. 25 (Kluver, Amsterdam, 1998).

  47. A.K. Didwania, F. Cantelaube, J.D. Goddard, Proc. R. Soc. London, Ser. A 456, 2569 (2000).

    Google Scholar 

  48. J. Garnier, Tassement et contraintes. Influence de la rigidité de la fondation et de l’anisotropie du massif, PhD Thesis, Université de Grenoble (1973).

  49. With CAST3M, see http://www.castem.org:8001.

  50. J. Jenkins, private communication.

  51. M. Oda, S. Nemat-Nasser, J. Konishi, Oils Fundat. 25, 85 (1985).

    Google Scholar 

  52. F. Radjai, D. Wolf, M. Jean, J.-J. Moreau, Phys. Rev. Lett. 80, 61 (1998).

    CAS  Google Scholar 

  53. E. Kolb, J. Cviklinski, J. Lanuza, P. Claudin, E. Clément, Phys. Rev. E 69, 031306 (2004).

    Google Scholar 

  54. F. Leonforte, A. Tanguy, J.P. Wittmer, J.-L. Barrat, Phys. Rev. B 70, 014203 (2004).

    Google Scholar 

  55. C.F. Moukarzel, H. Pacheco-Martinaez, J.C. Ruiz-Suarez, A.M. Vidales, Granular Matter 6, 61 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Claudin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atman, A.P.F., Brunet, P., Geng, J. et al. From the stress response function (back) to the sand pile “dip”. Eur. Phys. J. E 17, 93–100 (2005). https://doi.org/10.1140/epje/i2005-10002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2005-10002-2

PACS.

Navigation