Skip to main content
Log in

Stress fluctuations in granular material response during cyclic direct shear test

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper presents the results of an intensive series of experiments on various types of sands using cyclic direct shear testing apparatus. Two different grain shapes (rounded and angular) of sands having distinct sizes (0.25–0.5 and 1.0–2.0  mm) were tested in an automated constant normal load cyclic direct shear testing apparatus at an 100 kPa vertical effective stress, and two rates of shearing (2.0 and 0.025 mm/min). Experiments on the specimens resulted in sharp decreases followed by gradual increases in shear stress values. The results suggest that these successive drops and formations give a stick–slip nature to the fluctuations, which might be attributed mainly to the rate of loading, shape of grains, size of grains, and fines contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abbireddy, C.O.R., Clayton, C.R.I., Huvenne, V.A.: A method of estimating the form of fine particulates. Geotechnique 59(6), 503–511 (2009)

    Article  MATH  Google Scholar 

  2. Aharonov, E., Sparks, D.: Shear profiles and localization in simulations of granular materials. Phys. Rev. E 65, 1–12 (2002)

    Article  MATH  Google Scholar 

  3. Adjemian, F.: Stick-slip et transition de broutage dans les essais triaxiaux sur billes de verre. Thèse de doctorat, Ecole Centrale Paris (2003)

  4. Adjemian, F., Evesque, P.: Experimental study of stick–slip behaviour. Int. J. Numer. Anal. Methods Geomech. 28, 501–530 (2004)

    Article  Google Scholar 

  5. Albert, I., Tegzes, P., Kahng, B., Albert, R., Sample, J.G., Pfeifer, M.: Jamming and fluctuations in granular drag. Phys. Rev. Lett. 84(22), 5122–5125 (2000)

    Article  ADS  Google Scholar 

  6. Albert, I., Tegzes, P., Albert, R., Sample, J.G., Barabasi, A.L., Vicsek, A.L., Kahng, B., Schiffer, P.: Stick–slip fluctuations in granular drag. Phys. Rev. E 64, No. 031307 (2001)

  7. Alshibli, K.A., Roussel, L.E.: Experimental investigation of slip–stick behaviour in granular materials. Int. J. Numer. Anal. Methods Geomech. 30, 1391–1407 (2006)

    Article  MATH  Google Scholar 

  8. Arasan, S., Akbulut, S., Hasiloglu, A.S.: The relationship between the fractal dimension and shape properties of particles. KSCE J. Civil Eng. 15(7), 1219–1225 (2011)

    Article  Google Scholar 

  9. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized critically: an explanation of 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  10. Bardet, J.P., Proubet, J.: Numerical simulations of shear bands in idealized granular materials. Solid State Phenom. 23, 24, 473–482 (1992)

    Article  MATH  Google Scholar 

  11. Bi, Z., Sun, Q., Jin, F., Zhang, M.: Numerical study on energy transformation in granular matter under biaxial compression. Granul. Matter 13, 503–510 (2011)

    Article  MATH  Google Scholar 

  12. Brace, W.F., Byerlee, J.D.: Stick–slip as a mechanism for earthquakes. Science 153, 990–992 (1996)

    Article  ADS  MATH  Google Scholar 

  13. Braun, O.M., Naumovets, A.G.: Nanotribology: microscopic mechanics of friction. Surf. Sci. Rep. 60, 79–158 (2006)

    Article  ADS  Google Scholar 

  14. Cabalar, A.F., Clayton, C.R.I.: Some observations of the effects of pore fluids on the triaxial behavior of a sand. Granul. Matters 12, 87–95 (2010)

    Article  Google Scholar 

  15. Cabalar, A.F.: Applications of the triaxial, resonant column and oedometer tests to the study of micaceous sands. Eng. Geol. 112, 21–28 (2010)

    Article  Google Scholar 

  16. Cabalar, A.F., Dulundu, K., Tuncay, K.: Strength of various sands in triaxial and cyclic direct shear tests. Eng. Geol. 156, 92–102 (2013)

    Article  MATH  Google Scholar 

  17. Cabalar, A.F., Hasan, R.A.: Compressional behaviour of various size/shape sand–clay mixtures with different pore fluids. Eng. Geol. 164, 36–49 (2013)

    Article  Google Scholar 

  18. Cain, R.G., Page, N.W., Biggs, S.: Microscopic and macroscopic aspects of stick–slip motion in granular shear. Phys. Rev. E 64, 016413 (2001)

    Article  ADS  Google Scholar 

  19. Cates, M.E., Wittmer, J.P., Bouchaud, J.P., Claudin, P.: Jamming, forces chains, and fragile matter. Phys. Rev. Lett. 81(9), 1841–1844 (1998)

    Article  ADS  MATH  Google Scholar 

  20. Cedergen, H.R.: Seepage, Drainage, and Flownets, 3rd edn. Wiley, New York (1989)

    Google Scholar 

  21. Cho, G.C., Dodds, J.S., Santamarina, J.C.: Particle shape effects on packing density, stiffness and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Article  Google Scholar 

  22. Clayton, C.R.I., Theron, M., Vermeulen, N.J.: The effect of particle shape on the behaviour of gold tailings. Advances in Geotechnical Engineering: The Skempton Conference, Thomas Telford, London, pp. 393–404 (2004)

  23. Confort, D.H.: Prediction of drained strength of sands from relative density measurements. Evaluation of relative density and its role in geotechnical projects involving cohesionless soils, Special technical publication 523, ASTM, West Conshohoken, PA, pp. 281–303 (1973)

  24. Demirel, A.L., Granick, S.: Friction fluctuations and friction memory in stick–slip motion. Phys. Rev. Lett. 77(21), 4330–4333 (1996)

    Article  ADS  Google Scholar 

  25. Doanh, T., Hoang, M.T., Roux, J.N., Dequeker, C.: Stick–slip behaviour of model granular materials in drained triaxial compression. Granul. Matter 15, 1–23 (2013)

    Article  Google Scholar 

  26. Feder, H.J., Feder, J.: Self-organized critically in a stick–slip process. Phys. Rev. Lett. 66(20), 2669–2672 (1991)

    Article  ADS  Google Scholar 

  27. Fukuoka, H., Sassa, K., Wang, G., Sasaki, R.: Observation of shear zone development in ring-shear apparatus with a transparent shear box. Landslides 3(2), 239–251 (2006)

    Article  Google Scholar 

  28. Gajo, A.: The influence of system compliance on collapse of triaxial sand samples. Can. Geotech. J. 41, 257–273 (2004)

    Article  Google Scholar 

  29. Gilboy, G.: The compressibility of sand–mica mixtures. Proc. A.S.C.E. 2, 555–568 (1928)

    MATH  Google Scholar 

  30. Gori, U., Mari, M.: The correlation between the fractal dimension and internal friction angle of different granular materials. Soils Found. 41(3), 17–23 (2001)

    Article  Google Scholar 

  31. Gourdon, D., Israelachvili, J.N.: Transitions between smooth and complex stick–slip sliding of surfaces. Phys. Rev. E 68, No. 021602 (2003)

  32. Holtz, R.D., Kovacks, W.D.: An Introduction to Geotechnical Engineering. Prentice-Hall, Englewood Cliffs (1981)

    Google Scholar 

  33. Holubec, I., D’Appolonia, E.: Effect of particle shape on the engineering properties of granular soils. Evaluation of relative density and its role in geotechnical projects involving cohesionless soils. ASTM, STP523, West Conshohocken, PA, pp. 304–318 (1973)

  34. Hyslip, J.P., Vallejo, L.E.: Fractal analysis of roughness and size distribution of granular materials. Eng. Geol. 48(3–4), 231–244 (1997)

    Article  Google Scholar 

  35. Kramer, S.L.: Geotechnical Earthquake Engineering. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  36. Krumbein, W.C.: Measurement and geological significance of shape and roundness of sedimentary particles. J. Sediment. Petrol. 11(2), 64–72 (1941)

    Google Scholar 

  37. Lees, G.: A new method for determining the angularity of particles. Sedimentology 3, 2–21 (1964)

    Article  ADS  Google Scholar 

  38. Li, Y.R., Aydin, A.: Behavior of rounded granular materials in direct shear: mechanisms and quantification of fluctuations. Eng. Geol. 115, 96–104 (2010)

    Article  Google Scholar 

  39. Luding, S.: The micro–macro mechanics of granular materials. GACM report 2, 22–2 (2003)

  40. Mandelbroth, B.B.: Fractals Form, Change and Dimension. Freeman, San Francisco (1977)

    Google Scholar 

  41. Morgan, J.K.: Numerical simulations of granular shear zones using the distinct element method 2. Effects of particle size distribution and interparticle friction on mechanical behavior. J. Geophys. Res. 104(B2), 2721–2737 (1999)

    Article  ADS  Google Scholar 

  42. Muszynski, M.R., Stanley, J.V.: Particle shape estimates of uniform sands: visual and automated methods comparison. J. Mater. Civ. Eng. 24(2), 194–206 (2012)

    Article  Google Scholar 

  43. Olson, R.E., Mesri, G.: Mechanisms controlling the compressibility of clay. J. Soil Mech. Found. Div. ASCE 96 (SM6), Proc. Paper 7649, November, pp. 1863–1878 (1970)

  44. O’Sullivan, C., Cui, L.: Micromechanics of granular material response during load reversals: combined DEM and experimental study. Powder Technol. 193, 289–302 (2009)

    Article  Google Scholar 

  45. Powers, M.C.: A new roundness scale for sedimentary particles. J. Sediment. Petrol. 23(2), 117–119 (1953)

    Google Scholar 

  46. Santamarina, J.C.: Soil behaviour at the microscale: particle forces. In: Proceedings of Symposium Soil Behaviour and Soft Ground Construction, in honour of Charles C. Ladd, October, MIT, USA (2001)

  47. Sornette, A., Sornette, D.: Self-organized critically and earthquakes. Europhys. Lett. 9(3), 197–202 (1989)

    Article  ADS  Google Scholar 

  48. Taylor, D.W.: Fundamentals of Soil Mechanics. Wiley, New York (1948)

    Google Scholar 

  49. Terzaghi, K.: Erdbaumechanik auf bodenphysikalischer grundlage. Deuticke, Leipzig (1925)

    MATH  Google Scholar 

  50. Tsai, J.C., Voth, G.A., Gollub, J.P.: Internal granular dynamics, shear-induced crystallization, and compaction steps. Phys. Rev. Lett. 91(6), 1–4 (2003)

    Article  Google Scholar 

  51. Vallejo, L.E.: Fractal analysis of granular materials. Géotechnique 45(1), 159–163 (1995)

    Article  MATH  Google Scholar 

  52. Wadell, H.: Volume, shape, and roundness of rock particles. J. Geol. 40(5), 443–451 (1932)

    Article  ADS  Google Scholar 

  53. Xu, Y.F., Sun, D.A.: Correlation of surface fractal dimension with frictional angle at critical state of sands. Geotechnique 55(9), 691–695 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. Dr. Kagan Tuncay of the METU for his invaluable helps during the experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Firat Cabalar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabalar, A.F. Stress fluctuations in granular material response during cyclic direct shear test. Granular Matter 17, 439–446 (2015). https://doi.org/10.1007/s10035-015-0568-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-015-0568-y

Keywords

Navigation