Skip to main content
Log in

The dynamics of water in nanoporous silica studied by dielectric spectroscopy

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Broad-band dielectric spectroscopy is used to investigate the dynamics of hydration water on the surface of the cylindrical pores of a nanostructured silica material (MCM-41, with pore diameter of 3.2 nm) at various hydrations, in the temperature range 250-150 K. We focus our attention on orientational relaxations that shift from 0.5 MHz at 250 K to less than 1 Hz at 150 K. The measurements distinguish the relaxation of the hydroxyl groups at the surface of silica from the orientational dynamics of hydration water which strongly depends on the degree of hydration. Although it is significantly faster than the dynamics of water in ice, the orientational relaxation of “non-freezing” water has an activation energy comparable to that in ice when the hydration layer is complete and approximately two-molecule thick.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.W. Starr, J.K. Nielsen, H.E. Stanley, Phys. Rev. Lett. 82, 2294 (1999).

    CAS  Google Scholar 

  2. M.-C. Bellisent-Funnel, J.-M. Zanotti, S.H. Chen, Faraday Discuss. 103, 281 (1996).

    Google Scholar 

  3. B. Halle, in Hydration Processes in Biology, edited by M.-C. Bellissent-Funnel (IOS Press, 1999) p. 233.

  4. G. Careri, G. Consolini, Phys. Rev. E 62, 4454 (2000).

    CAS  Google Scholar 

  5. F. Pizzituti, F. Bruni, Phys. Rev. E 64, 052905-1-4 (2001).

    Google Scholar 

  6. P.W. Fenimore, H. Frauenfelder, B.H. McMahon, F.G. Parak, Proc. Natl. Acad. Sci. U.S.A. 99, 16047 (2002).

    CAS  PubMed  Google Scholar 

  7. Y. Ryabov, A. Gutina, V. Arkhipov, Y. Feldman, J. Phys. Chem. B 105, 1845 (2001).

    CAS  Google Scholar 

  8. H. Jansson, J. Swenson, Eur. Phys. J. E 12, s01, S51 (2003).

  9. A. Taguchi, F. Schüth, Microporous Mesoporous Mater. 77, 1 (2005).

    CAS  Google Scholar 

  10. C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992).

    Article  CAS  Google Scholar 

  11. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schimdt, C.-T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).

    Article  CAS  Google Scholar 

  12. K. Morishige, K. Kawano, J. Chem. Phys. 110, 4867 (1999).

    CAS  Google Scholar 

  13. A. Schreiber, I. Ketelsen, G.H. Findenegg, Phys. Chem. Chem. Phys. 3, 1185 (2001).

    CAS  Google Scholar 

  14. S. Sklari, H. Rahiala, V. Stathopoulos, J. Rosenholm, P. Pomonis, Microporous Mesoporous Mater. 49, 1 (2001).

    CAS  Google Scholar 

  15. S. Takahara, M. Nakano, S. Kittaka, Y. Kuroda, T. Mori, H. Hamano, T. Yamaguchi, J. Phys. Chem. B 103, 5814 (1999).

    CAS  Google Scholar 

  16. F. Mansour, R.M. Dimeo, H. Peemoeller, Phys. Rev. E 66, 041307-1-7 (2002).

    CAS  Google Scholar 

  17. A. Faraone, Li Liu, C-Y Mou, P-C Shih, J.R.D. Copley, S.-H. Chen, J. Chem. Phys. 119, 3963 (2003).

    CAS  Google Scholar 

  18. The synthesis has been modified using for one part the improved procedure of K.M. Reddy, C. Song, Catal. Lett. 36, 103 (1997) and introducing tosylate as a surfactant counterion rather than bromide as reported and patented in P. Reinert, B. Garcia, C. Morin, A. Badiei, P. Perriat, O. Tillement, L. Bonneviot, Stud. Surf. Sci. Catal. 146, 133 (2003)

    Google Scholar 

  19. F. Pizzituti, F. Bruni, Rev. Sci. Instrum. 72, 2502 (2001).

    Google Scholar 

  20. A.K. Jonscher, Philos. Mag. B 38, 587 (1978).

    CAS  Google Scholar 

  21. R. Bergman, J. Swenson, L. Börjesson, P. Jacobsson, J. Chem. Phys. 113, 357 (2000).

    CAS  Google Scholar 

  22. J. Lobaugh, G.A. Voth, J. Chem. Phys. 104, 2056 (1996).

    CAS  Google Scholar 

  23. S. Havriliak, S. Negami, J. Polym. Sci. C 14, 99 (1966).

    Google Scholar 

  24. J.B. Hasted, Aqueous Dielectrics (Chapman and Hall, London, 1973).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Peyrard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanoudaki, A., Albela, B., Bonneviot, L. et al. The dynamics of water in nanoporous silica studied by dielectric spectroscopy. Eur. Phys. J. E 17, 21–27 (2005). https://doi.org/10.1140/epje/i2004-10101-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10101-6

PACS.

Navigation