Skip to main content

Rotational and Translational Diffusion of Ionic Liquids in Silica Nanopores

  • Chapter
  • First Online:
Dynamics in Geometrical Confinement

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

  • 1180 Accesses

Abstract

Diffusion in ionic liquids (ILs) contained in silica nanopores is investigated in a wide frequency and temperature range by a combination of Broadband Dielectric Spectroscopy (BDS) and Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR). By applying the Einstein-Smoluchowski relations to the dielectric spectra, diffusion coefficients are obtained in quantitative agreement with independent PFG NMR. More than tenfold systematic decrease in the effective diffusion coefficient (for [HMIM] [PF\(_{6}\)]) from the bulk value is observed in the silica nanopores. A model assuming a reduced mobility at the IL/porous matrix is proposed and shown to provide quantitative explanation for the remarkable decrease of effective transport quantities (such as diffusion coefficient, DC conductivity and consequently, the dielectric loss) of the IL in bare porous silica membranes. This approach is supported by the observation that silanization of silica nanopores results in significant increase of the effective diffusion coefficient, which approaches the value for the bulk liquid. For a different IL ([BMIM] [BF\(_{4}\)]), it is observed that ionic mobility at lower temperatures is enhanced by more than two decades under nanoconfinement in comparison to the bulk value. This increase in the diffusivity is attributed to reduced packing density of the ions in the nanopores. In summary, the resultant macroscopic transport properties of glass-forming ILs in confining space are determined by a subtle interplay between surface- and confinement-effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BDS:

Broadband Dielectric Spectroscopy

BMIM BF\(_{4}\) :

1-Butyl-3-methylimidazolium tetrafluoroborate

FTIR:

Fourier Transform Infrared

HMDS:

Hexamethyldisilazane

HMIM PF\(_{6}\) :

1-hexyl-3-methylimidazolium hexafluorophosphate

NMR:

Nuclear Magnetic Resonance

PFG NMR:

Pulsed Field Gradient Nuclear Magnetic Resonance

SEM/TEM:

Scanning and Tunneling Electron Microscopy

VFT:

Vogel-Fulcher-Tammann

References

  1. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  2. Le Bideau J et al (2007) Effect of confinement on ionic liquids dynamics in monolithic silica ionogels: 1H NMR study. Phys Chem Chem Phys 9(40):5419–5422

    Article  CAS  Google Scholar 

  3. Davenport M et al (2009) Squeezing Ionic liquids through nanopores. Nano Lett 9(5):2125–2128

    Article  CAS  Google Scholar 

  4. Iacob C et al (2010) Charge transport and diffusion of ionic liquids in nanoporous silica membranes. Phys Chem Chem Phys 12(41):13798–13803

    Article  CAS  Google Scholar 

  5. Shi W, Sorescu DC (2010) Molecular simulations of CO\(_2\) and H\(_2\) sorp tion into ionic liquid 1-n-Hexyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)amide ([hmim] [Tf2N]) confined in carbon nanotubes. J Phys Chem B 114(46):15029–15041

    Google Scholar 

  6. Wang S, et al (2009) Molecular dynamic simulations of ionic liquids at graphite surface. J Phys Chem C 114(2):990–995

    Google Scholar 

  7. Sangoro JR, Kremer F (2012) Charge transport and glassy dynamics in ionic liquids. Acc Chem Res 45(4):525–532

    Article  CAS  Google Scholar 

  8. Einstein A (1905) On the motion of small particles suspended in liquids at rest, required by the molecular-kinetic theory of heat. Ann Phys 17:549–560

    Article  CAS  Google Scholar 

  9. Smoluchowscki M (1906) Essay on the theory of Brownian motion and disor dered media. Ann Phys 21:755–780

    Google Scholar 

  10. Sangoro JR et al (2011) Diffusion in ionic liquids: the interplay between mo lecular structure and dynamics. Soft Matter 7(5):1678–1681

    Article  CAS  Google Scholar 

  11. Iacob C, Sangoro JR, Kipnusu WK, Valiullin R, Kärger J, Kremer F (2011) Enhanced charge transport in nanoconfined ionic liquids. Soft Matter 8:289–293

    Article  Google Scholar 

  12. Scott GD, Kilgour DM (1969) The density of random close packing of spheres. J Phys D: Appl Phys 2(6):863–866

    Article  Google Scholar 

  13. Roth R (2010) Fundamental measure theory for hard-sphere mixtures: a re view. J Phys Condens Matter 22(6):063102

    Article  Google Scholar 

  14. Luchnikov VA, Medvedev NN, Gavrilova ML (2001) The Voronoi- Delaunay approach for modeling the packing of balls in a cylindrical container. In: Proceedings of the International Conference on Computational Sciences-Part I2001. Springer-Verlag, New York, pp 748–752

    Google Scholar 

  15. Finney JL (1970) Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc R Soc Lond A 319(1539):479–493

    Article  CAS  Google Scholar 

  16. Luchnikov VA et al (1999) Voronoi-Delaunay analysis of voids in systems of nonspherical particles. Phys Rev E 59(6):7205

    Article  CAS  Google Scholar 

  17. Spiess HW (2010) Interplay of structure and dynamics in macromolecular and supramolecular systems. Macromolecules 43(13):5479–5491

    Article  CAS  Google Scholar 

  18. Sen PN (2004) Time-dependent diffusion coefficient as a probe of geometry. Concepts Magn Reson Part A 23:1

    Google Scholar 

  19. Naumov S, Khokhlov A, Valiullin R, Karger J, Monson PA (2008) Understanding capillary condensation and hysteresis in porous silicon: network effects within independent pores. Phys Rev E: Stat Nonlinear Soft Matter Phys 78:060601

    Article  Google Scholar 

  20. Wallacher D, Künzner N, Kovalev D, Knorr N, Knorr K (2004) Capillary condensation in linear mesopores of different shape. Phys Rev Lett 92:19

    Article  Google Scholar 

  21. Gratz M, Wehring M, Galvosas P, Stallmach F (2009) Multidimen sional NMR diffusion studies in microporous materials. Microporous Mesoporous Mater 125:30–34

    Article  CAS  Google Scholar 

  22. Kipnusu WK, Kossack W, Iacob C, Zeigermann P, Jasiurkowska M, Sangoro JR, Valiullin R, Kremer F (2013) The interplay between inter- and intramolecular dynamics in a series of alkylcitrates. Soft Matter 9:4681–4686

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sergej Naumov for help in conducting the PFG-NMR measurements and Dr. Periklis Papadopoulos for FT-IR measurements. Financial support from DFG (Germany), NOW (The Netherlands) within IRTG “Diffusion in Porous Materials” and DFG Priority Program SPP 1191 on Ionic Liquids is gratefully acknowledged. J. R. S. thanks the University of Tennessee-Knoxville for financial support through tenure-track faculty research start-up funds. Ciprian Iacob thanks the Penn State University and St. Jude Medical for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Sangoro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iacob, C., Sangoro, J., Kipnusu, W., Kremer, F. (2014). Rotational and Translational Diffusion of Ionic Liquids in Silica Nanopores. In: Kremer, F. (eds) Dynamics in Geometrical Confinement. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-06100-9_6

Download citation

Publish with us

Policies and ethics